All-Superconducting Substation

An HTS System Integration Concept

by CSAC

General Concept

- Substation comprised of all superconducting power components
 - Transformer, FCL, µSMES, Cabling
 - (Turbine Generator Rotor)
- Single Cryostation Support
- "Full Quadrant" Power
- · Uninterruptible Substation Power
 - The EPRI UPS Substation Project Extended

Substation Specifications

Power Capacity

Voltage

Area

Transformer

FCL

SMES

Cabling

100 MVA

24 kV

 $40 \times 60 \text{ m}^2$

100 MVA, 3¢

3 @ 30 MVA

3 @ 3 MJ (30 MVA)

100 MVA, 3φ, 500 m

Nice Family House

Legend

Courthouse where you can sue your local utility when the lights go off

Super-Sub Plan View Scale/Dimensions

Transmission Line 0.5 km

HTS Component Cryo-Budget

Component	Heat Load Range	Heat Load Design
<u>Transformer</u>		
30 K	150 - 400 W	250 W
77 K	500 - 800 W	600 W
Fault Current		
<u>Limiter</u>		
30 K	75 - 300 W	200 W
77 K	400 - 1000 W	700 W
<u>SMES</u>		
20 K	20 - 70 W	50 W
77 K	75 - 300 W	200 W
<u>Transmission Line</u>		
30 K	5 - 15 W/m	3000 W
77 K	5 - 10 W/m	3000 W

Cryoplant Cost vs Power

Net CryoPower/Cost

Component	300 K Cryopower	Cryo Cost
Transformer	240 kW	450 k\$
Fault Current	240 kW	450 k\$
Limiter		
SMES	12 kW	50 k\$
Transmission Line	260 kW	500 k\$
Total—Separate	752 kW	\$1450 k\$
Refrigerators		
Super-Sub single	700 kW	\$1000 k\$
Refrigerator		

Conclusions

- Tangible energy/cost savings accrue from systems matching and cryointegration of individual components (e.g., eliminate 300 K terminations)
- Commercial HTS power components will be emerging from DOE SPI
- System integration of HTS could play key role in addressing the President's Critical Infrastructure Directive

Proposal

 DOE SPES sponsor design study on integrated HTS power facility (e.g., "Super Substation")

 Two SPI teams solicited/selected competiviely as additions to FY00/01

\$500 K ea. (\$1M total), 1 Year

PDF e-copies of this poster and the JPEG color concept of the All-Superconducting Substation can be downloaded from hubub/epri.com/pgrant (notification appreciated) or sent individually by e-mail