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“A Thread Across the Ocean”

“The Story of the Trans-Atlantic Cable (1854 – 1866)”

John Steele Gordon



Atlantic Cable Timeline 
& Designs

1857
“Broke” 1858

“Worked for a 
Month”

1865
“Parted”

(Recovered in 1866)
1866

Success!

2 $/m
(2005)

200 A @ 
10 $/kA×m



The After-Story

1870

1903



What Kept Them Going?

• The investors knew, that if communications 
with Europe could be cut from 2 weeks to 2 
minutes, they’d all get…

• FILTHY RICH!
– Estimates are that the total cost of the project 

in 2005 dollars was $100 M
– 1867 revenue in 2005 dollars was $10 M
– Go figure…



A Symbiosis of 
Nuclear/Hydrogen/Superconductivity
Technologies supplying Carbon-free, 

Non-Intrusive Energy for all 
Inhabitants of Planet Earth

The SuperGrid Vision

SuperCities & SuperGrids

SuperCables !



The Hydrogen Economy

• You have to make it, just like electricity
• Electricity can make H2, and H2 can make 

electricity  (2H2O 2H2 + O2)
• You have to make a lot of it
• You can make it cold, - 419 F  (21 K)

P.M. Grant, “Hydrogen lifts off…with a heavy load,” Nature 424, 129 (2003)



Diablo Canyon



California Coast Power

Diablo Canyon
2200 MW
Power Plant

Wind Farm
Equivalent

5 Miles



Co-Production of Hydrogen and 
Electricity

Source: INEL & General Atomics

Reactor
Vessel

O2



“Hydricity” SuperCables
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I

H2 H2

Circuit #1 +v I
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H2 H2

Circuit #2

Multiple circuits
can be laid 
in single trench

Bartlit, Edeskuty, & 
Hammel (1972)



SuperCable Monopole
HV Insulation

“Super-
Insulation”

Superconductor

Hydrogen

DO

DH2

tsc



Power Flows
PSC = 2|V|IASC, where

PSC = Electric power flow
V = Voltage to neutral (ground)
I = Supercurrent
ASC = Cross-sectional area of superconducting annulus

Electricity

PH2 = 2(QρvA)H2, where

PH2 = Chemical power flow 
Q = Gibbs H2 oxidation energy (2.46 eV per mol H2)
ρ = H2 Density 
v = H2 Flow Rate 
A = Cross-sectional area of H2 cryotube

Hydrogen



Hydricity Scaling Factor

( )( )/ /e/hR J Q Vρ ν≡

Dimensionless, geometry-independent 
scaling factor defines relative amounts of 
electricity/hydrogen power flow in the 
SuperCable:

“Energy Density” “Pressure”



Electric & H2 Power

0.12525,000100,000+/- 50001000
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Electricity
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SuperCable H2 Storage

32201.6TVA Raccoon Mountain

20201Alabama CAES
881Scaled ETM SMES

Energy (GWh)Storage (hrs)Power 
(GW)

Some Storage 
Factoids

One Raccoon Mountain = 13,800 cubic meters of LH2

LH2 in 10 cm diameter, 250 mile bipolar SuperCable
= Raccoon Mountain



H2 Gas at 77 K and 1850 psia has 50% of the energy content of liquid H2
and 100% at 6800 psia

Relative Density of H2 as a Function of Pressure at 77 K 
wrt LH2 at 1 atm
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Supercritical H2 SuperCable
Electrical 
Insulation

“Super-
Insulation”

Superconductor

Supercritical Hydrogen 
@ 77 K

1000 – 7000 psia

Liquid Nitrogen 
@ 77 K



A Canadian’s View of the World



Electrical 
Insulation

“Super-
Insulation”

Superconductor

LNG @ 105 K
1 atm (14.7 psia)

Liquid Nitrogen 
@ 77 K

Thermal 
Barrier to LNG

LNG SuperCableDesign for eventual 
conversion to high 
pressure cold or liquid H2



FILTER FILTER

i
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Iac
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Iac

Sending
End

Receiving
End

Rectifier InverterR
DC Line

Idc

Vdc

Capacitor Filter

i

t

Idc

Transformer

dc Transmission Lines 101 
(for “policy makers”)



dc vs. ac: ABB Itaipu Study



Sayerville, NJ → Levittown LI, NY

- 600 MW (+/- 250 kV, 1200 A)
- 65 miles (105 km)
- $400 M
- 2007

Pirelli (GS)
Energy Cables

$190 M

1.87Cu

HTSC

T 
77 K

25.1100

Cost 
($M)

C/P
$/kA×m

Financials
40 yrs @  4%:  $ 20M
LOM:                     1 M
NOI (100%):          5 M



Financials
$750 M ($400 M “VC”, $350 M “Futures”)

• Loan Payment (4%, 40 yrs, 750 M$) = 35 M$/yr
• Labor, Overhead, Maintenance = 5 M$/yr
• Tariff = 0.5 ¢/kWh
• Profit (NOI) @ 50% Capacity = 4 M$/yr
• Profit (NOI) @ Full Capacity = 48 M$/yr

Specifications
2-1000 MW HVDC Bipolar Circuits

• Circuit 1: 130 miles, Greene County → Bronx County
• Circuit 2: 140 miles, Albany County → New York County
• Each Circuit: +/- 500 kV, 1000 A Bipolar (2 cables ea.)

Why didn’t it go forward?
HTSC Cost = $87 M



“JC’s” of Common Metals (77 K)



Could dc Cables be the HTSC 
“Thread?”

• Advantages of dc
– Only dc can go long distances
– Allows asynchronous connection of ac grids
– Power flow can be controlled quickly 

(HTSC?)
• Advantages of HTSC dc

– Can wheel enormous amounts of power over 
very long distances with minimal loss



Two IBM Physicists (1967)

• Nb3Sn (TC = 18 K) @ 4.2 K
• 100 GW (+/- 100 kV, 500 kA)
• 1000 km
• Cost: $800 M ($8/kW) (1967)

$4.7 B Today!



G-M Specs



LASL SPTL (1972-79)

Specifications
• 5 GW           

(+/- 50 kV, 50 kA)

• PECO Study 
(100 km, 10 GW)



BICC HTSC dc Cable (1995)

Design Target
• 400 MW, 100 km
• Flowing He, 0.2 kg/s, 2 

MPa, 15 – 65 K
• Cooling Losses: 150 kW

Prototype Specs
• 400 MW 

– +/- 20 kV, 10 kA
• Length: 1.4 m
• Diameter:  4 cm
• He (4.2 – 40 K)



e-Pipe

I
-V

Ground 

Structural Support

Superconducting
Electricity
Pipeline

Thermal
Insulation

Electrical
Insulation

Superconductor
(-V)

Superconductor
(+V)

+V
I

Liquid
Nitrogen



e-Pipe Specs (EPRI, 1997)

- 10 stations
- 10 km spaced
- 200 kW each

Vacuum: 
- 10-5 – 10-4 torr

- 21.6 kliters LN2/hr
- 100 kW coolers
- 120 gal/min

Temperature Specs:
- 1 K/10 km @ 65 K
- 1 W/m heat input

1610 kmLength

5 GW 
(+/- 50 kV,50 kA)

Capacity



M arginal Cost of Electricity (M id Value Fuel Costs)
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e-Pipe/Gas/HVDC Cost Comparison
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HTSC ($5/kA-m @ 65 K) 
beats HVDC and Gas!



I I

HV Insulation

“Super-
Insulation”

Superconductor

Liquid NitrogenDO

Dcryo

tsc

HTSC SuperCable

Garwin – Matisoo

Revisited !

Why Monaxial?
- Simple
- Known Dielectric
- Easy to Install
& Service



SuperCable Parameters
• Power = 5 GW
• Voltage = 25 +/- kV
• Current = 100 kA
• Jc = 25000 A/cm^2
• Dcryo = 5 cm
• A* = 3.629 cm^2
• t(sc) = 0.243 cm
• R* = 1.075 cm
• B =                  0.8        T



AMSC Tape Jc(T, B)

Parallel

De-rating
Factor

0.8 T

I’m not going to 
show you the 
perpendicular data!



High Amplitude Transient 
Current Losses (ac & energize)

0.31/hour100,000
2.4 × 10560100,000

0.011/day100,000

H (W/m)F (Hz)Io (A)

Possibly could reverse line in one hour!

“Bean Model”



Small Amplitude Losses
(Load Fluctuations)

1 × 10-215003000030
3 × 10-310002000020
4 × 10-45001000010
4 × 10-75010001

H (W/m)∆P (MW)∆I (A)∆ (%)
Load Fluctuation Losses over a 1 hour period

OK, as long as changes occur slowly!



Small Amplitude Losses
(Load Fluctuations)

…and sometimes even when they’re fast!

Consider 1 MW worth of customers coming in 
and out every millisecond, (e.g., 10,000 
teenagers simultaneously switching 100 W 
light bulbs on and off) resulting in ΔI = 20 A, 
but a heat load of only 10 μW/m



Small Amplitude Losses
(Ripple)

62.3225050005
31.9120040004
13.4615030003
3.9910020002
0.505010001

H (W/m)∆P (MW)∆I (A)∆ (%)
3-Phase Converter:  F = 360 Hz



Radiative Heat In-Leak
WR = 0.5εσ (T4

amb – T4
SC)/(n-1), where

WR = Power radiated in as watts/unit area
σ = 5.67×10-12 W/cm2K4

Tamb = 300 K
TSC = 65 - 77 K
ε = 0.05 per inner and outer tube surface
DSC = 5 cm
n = number of layers of superinsulation (10)

Then WR = 0.2 W/m



Fluid Dynamics of Liquid Nitrogen 
Flow through a 5-cm Diameter Pipe at 1 bar

12.34914828086065

9.914329016380877

Re
106

V
m/s

μ2/ρ
ndyne

μ
μPa×s

ρ
kg/m3

T 
°K

Inertial Forces

Viscous Forces
Re /VDρ μ= ≈

Thus, it takes about 30 - 100  dynes 
“push” on an object to overcome 
viscous forces exerted by the liquid 
nitrogen



Friction Losses arising from pumping LN2
through a 5-cm pipe at a flow rate of 4 m/s

Wloss = M Ploss / ρ ,

Where  M = mass flow per unit length
Ploss = pressure loss per unit length
ρ = fluid density

4.0565 K
3.8177 K

Wloss (W/m)

ε = 0.015 mm 
(stainless steel)

Colebrook- Weymouth Equation



Heat to be Removed by LN2
dT/dx = WT/(ρvCPA), where

dT/dx = Temp rise along cable, K/m
WT = Total Heat Generated per unit Length
ρ = Density 
v = Flow Rate (4 m/s)
CP = Heat Capacity 
A = Tubular Area (D = 5 cm)

0.45200386065

0.45204080877

dT/dx
°K/km

WT

W/m
CP

J/kg × m
ρ

kg/m3

T 
°K

To offset a 1 K temperature increase, refrigeration stations 
would be needed every 2.5 km – way too close!



To-Do List
• Fine-Tune All Parameters

– Diameter, Flow Rate, Temperature, Pressure, Power 
– Site Preparation, Materials Delivery and Construction

• Magnetic Field Issues
– Anelastic losses (conductor tapes)
– Spacing of Monopoles (2 100,000 A cables 1 m apart 

experience a mutual force of 2000 N/m!)
• Engineering Economy Study

– How important really is wire cost?
– How big a project for a reasonable NOI (size matters!)?

Find a “Get Rich Quick” Commercial Opportunity!



EPRI Handouts
(See Steve Eckroad)

• White Paper (Chauncey Starr)

• “Maulbetsch Report” (John Maulbetsch)



Visits

Department of Energy (July 2005)

– Jim Daley & Kevin Kolevar (Electricity, etc.)

– Ray Orbach & Tom Vanek (Science)

– Shane Johnson (Nuclear)



Exposure (2005)
(http://www.w2agz.com/epri-sctf5.htm)

Publications
• Grant, "The SuperCable: Dual Delivery of Hydrogen and Electric Power," IEEE 

PES*
• Grant, “The SuperCable: Dual Delivery of Chemical and Electric Power," IEEE 

Trans. Appl. Super. 15, 1810*
• Grant, "Cryo-Delivery Systems for the Co-Transmission of Chemical and 

Electrical Power," J. Cryo. Eng. (to be published)*
• Grant, “Garwin-Matisoo Revisited,” SUST (to be published)*

Presentations
• Grant, Presentations at conferences associated with the above three 

publications
• Grant, “System, Construction and Integration Issues for Long Distance, High 

Capacity, Ceramic HTSC dc Cables,” PacRim 6, Maui
Press & Popular

• Grant, "Nuclear Energy's Contribution to the City of the Future," Nuclear 
Future, Vol. 1, No. 1, p.17

• Starr, interview in Fortune Magazine, 8 August
• Grant, Overbye & Starr, “Continental SuperGrid,” Scientific American, to appear 

in early 2006 

*Peer Reviewed



Take-Home Reading Assignment

1. Garwin and Matisoo, 1967 (100 GW on Nb3Sn)
2. Edeskuty, 1972 (LASL dc SPTL, 5 GW, PECO)
3. Lasseter, et al., 1994 (HTSC dc Networks)
4. Beale, et al., 1996 (BICC HTSC dc, 400 MW)
5. Grant, 1996 (Promises, promises…ASC 96)
6. Schoenung, Hassenzahl and Grant, 1997 (5 GW on HTSC 

@ LN2, 1000 km)
7. Proceedings, SuperGrid Workshops, 2002 & 2004 (be sure 

to open Bibliography page !)
8. Neptune HVDC Cable, 2005
9. Grant, “London Calling,” Nature review of “Thread Across 

the Ocean.”

www.w2agz.com/epri-sctf5.htm

…and there will be a quiz next time I see you all!


