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increases, the higher order echoes disappear and only
the normal {=r echo remains.

IV. DISCUSSION

It is seen that the multiple echoes occur when the
spins are strongly coupled to the resonant cavity. The
general formalism applied to the quantum-mechanical
harmonic oscillator should apply to other systems such
as optical energy levels in an optical system.?

The relaxation processes of the magnons are divided

8 N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Phys. Rev.

Letters 13, 567 (1964); A. G. Fox and P. W. Smith, ibid. 18, 826
(1967}; S. L. McCall and E. L. Hahn, sbid. 18, 908 (1967).
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into homogeneous and inhomogeneous broadening. The
relaxation processes® which proceed via the coupling to
the Maxwell field will be strongly dependent upon the
mode structure imposed by the microwave cavity.
Further measurements of T; and Ty are in progress in
this system.
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The superconducting transition temperature is calculated as a function of the electron-phonon and elec-
tron-electron coupling constants within the framework of the strong-coupling theory. Using this theoretical
result, we find empirical values of the coupling constants and the “band-structure’ density of states for a
number of metals and alloys. It is noted that the electron-phonon coupling constant depends primarily on the
phenon frequencies rather than on the electronic properties of the metal. Finally, using these results, one can
predict a maximum superconducting transition temperature.

1. INTRODUCTION

IN this paper we derive a formula for the super-
conducting transition temperature, using the so-
called “strong-coupled” theory, as a function of the
coupling constants for the electron-phonon and Coulomb
interactions. We take the point of view here that the
theory of superconductivity is accurate and well-
developed and that, given certain properties of the
normal state of a given metal, we could calculate its
superconducting properties, e.g., T., with an accuracy
~19%. The necessary properties of the normal state are
(a) the electron energy bands near the Fermi energy,
(b) the phonon dispersion curves, (c) the fully dressed
(screened) electron-phonon interaction matrix elements,
and (d) the fully dressed Coulomb interaction between
electrons. All these properties are not sufficiently well-
known for any metal to make a first-principles calcula-
tion of its superconducting properties worthwhile. There
is much to be learned, however, by approaching the
problem from the other direction and asking what can
be learned about the normal metal from its measured
superconducting properties. There are available for a
number of superconducting metals and alloys measure-
ments of the superconducting transition temperature
T., the Debye temperature ©, and the electronic heat-
capacity coefficient v. Also, for a few metals, there are
measurements of the phonon energies and of the isotope

%

Fhsa

shift of T;. By making use of our theoretical formula for
T, and experimental data, we can find empirical values
for electron-phonon coupling constant A and the phonon
enhancement of cyclotron mass and specific heat. The
measured isotope shifts can be used to find empirical
values for the Coulomb coupling constant g*. With the
addition of information about the phonon energies, we
will be able to examine the makeup of A and discuss the
influence of the various metallic properties upon the
variations of A throughout the periodic table. Finally,
it will be pointed out that the theory makes a reasonably
definite statement about the maximum T, that one
should expect for a given class of materials.

The plan of the paper is as follows. In Sec. IT we will
write down the integral equations for the strong-
coupled superconductor at the transition temperature
and discuss an approximate, analytic solution. In Sec.
T11 we will present accurate numerical solutions of the
integral equations and show that these results for 7.
fit a simple analytic function of the coupling constants
A and u*. In Sec. IV we use these theoretical formulas
and experimental data to find empirical values of A and
the “band-structure” electronic density of states at the
Fermi surface for a number of metals and alloys. In
Sec. V we derive an expression for X in terms of an
average phonon energy N(0), and an average of the
electron-phonon matrix elements, and find empirical
values for these quantities for a few elements. We
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present a theoretical argument and empirical evidence
that the coupling constant depends strongly on the
phonon energies and only weakly on the other param-
eters in a given class of materials. With this observation,
we derive in Sec. VI a maximum 7. for that class of
materials.

II. THEORY

According to the Bardeen-Cooper-Schrieffer! (BCS)
theory of superconductivity, one has a relation between
the transition temperature T, a typical phonon energy
{w}, and the interaction strength N (0) V:

T.=1.14(w) exp[ —1/N{(0) V]. (1)
Here N(0) is the electronic density of states at the
Fermi surface and V is the pairing potential arising
from the electron-phonon interaction. Numerous
authors have estimated ¥ (0) and V using Eq. (1) and
experimental values of T,, ©, and v (the coefficient of
the electronic specific heat).

Since the BCS paper, much progress has been made
in understanding the role of the electron-phonon
interaction in normal and superconducting metals.
Migdal? showed that, in normal metals, the electron-
phonon interaction could be treated accurately [to
order {m/M)%?] even for strong coupling. Eliashberg?
and Nambu? have extended the Migdal treatment to the
superconducting state using the Green’s-function
techniques of Gor’kov.?® The Eliashberg theory takes
into account the retarded nature of the phonon-induced
interaction and treats properly the damping of the
excitations. This strong-coupling theory is also
accurate to order (m/M)Y2. With the addition of the
pseudopotential treatment® of the screened Coulomb
interaction, the Eliashberg equations represent the
present state of the art in superconductivity theory.”
Comparison with tunneling experiments®? and critical-
field measurements™ for strong-coupled superconductors
has provided a strong confirmation of the theory in
its present form.

! J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,
162 (1937); 108, 1175 (1957).

TA. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1938)
[English transl.: Soviet Phys.—JETP 7, 996 {(1958)].

3 G. M. Eliashberg, Zh. Fksperim. i Teor. Fiz. 38, 966 (1960) ;
39, 1437 (1960} [English transls.: Soviet Phys. —JETP 11, 696
(1960) ; 12, 1000 (1961}].

4¥Y. Nambu, Phys. Rev. 117, 648 (1960).

51. P. Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958)
[English transl.: Soviet Phys.—JETP 7, 505 (1953)1.

¢ P. Morel and P. W. Anderson, Phys. Rev. 125, 1263 (1962).

T J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964).

8 J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev.
Letters 10, 336 (1963) ; D. J. Scalapino, J. R. Schriefier, and J. W.
Wilking, Phys. Rev. 148, 263 {1966).

*W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14, 108
(1965); also {to be published).

0 J. C. Swihart, D. J. Scalapino, and Y, Wada, Phys. Rev.
Letters 14, 106 (1963).
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The integral equations for the normal and pairing
self-energies at the transition temperature aretl-2

Ew) =[1~Z(w) T
= [Tdw [ doog a?(wq) Flag
[o f' (w) F ()

X [N {wg) +f(—w") I (o' +o,+ ) — (o' +w—w) 1]
"H:N (wq) +f(°-’) 3[ ( _wi+wq+°’) -t

— (= +tw—w)7 ]}, (2a)

A=z T [* 2

C’J’

X R o’ udwqa" wq) Fw,

[A()] f: (wo) F )

XALN (@) +f(~ ") JL{e' Fegtw) 7+ (o' +og—w) ]
- I:N (""q) +f(°~”) :l[( "W’+“’q+w) -t

- N(OYV, (B2 do’
O T

X RefA(o") J[1-2f(") ],

where F{w,} is the phonon density of states, wy is the
maximum phonon frequency, «?(w,) is an average of
the electron-phonon interaction, V, is the matrix
element of the screened Coulomb interaction averaged
over the Fermi surface, Fj is the electronic bandwidth,
and N(w) and f(w) are the Bose and Fermi occupation
probabilities [exp(w/kT,) F1 . Thescreened Coulomb
interaction is described by the parameters ¥{0)V, and
Esg, and the electron-phonon interaction by the func-
tion a?{w,) F(w,), which we will discuss in more detail
below.

We find an approximate solution to Eq. (2) by sub-
stituting a trial function for A(w) on the right-hand side
of (2) and computing A(w} by performing the indi-
cated integrations. We then require that the trial A(w)
and the computed A(w) be as consistent as possible.
Such a procedure was followed by Morel and Anderson,®
who, in fact, used a better trial function than we will
take; we depend more on the accurate numerical results
of the next section. We choose

Ai(m) = A‘DJ
= Acm

(2b)

0<w<uwy
wolw (3)
and compute A(0) and A( ) from Eq. (2). Neglecting

( uVj Ambegackar and L. Tewordt, Phys. Rev. 134, AR05
1964). .

2D, J. Scalapino, Y. Wada, and J. C. Swihart, Phys. Rev.
Letters 14, 102 {1965).
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the thermal phonons, we have three contributions
to A0} :

2(0) =L2ZOT [ % g [ dug o) Flwd
0o @ 0

X {f(—") (@ Fwg) T —f(w") (—o'+wg) 7}

Do [eods W 20 dwg o (wg) F (wy)
..—_.Z(O)/O ~ tanh (ZTC)'Z-/; o
=FAN/Z(0) ] In{wo/Te). (4}

The dominant contribution to the ' integral is from
small o', and we neglect «’ relative to w, in the phonon
propagators (&'+wg)~t. The natural definition of a
dimensionless electron-phonon coupling constant is

@g d&lq N
A=2 [ afeg Flod —, (s)
0 4

and A corresponds roughly to the N(0)V of the BCS
model. Further, we have

w e’ wg
Ay =[Z(0) | —A, dwg a*{wy) F g
0 =p2OF [ T a. [ doneilon Flap
= a,/Z(0) J({w )N/ ewo),

where {w) is an average phonon frequency;

@)= [ dsgete Floo / [ "%faz(wmwg)

220,50, (7)

and we have neglected «, relative to «'. The first two
contributions are from the electron-phonon inter-

o' +0q

(6)

7

10+

int@/71)

-

14
b

Fic. 1. The logarithm of /7, versus {14X) /A from & solution
of the integral equations of the strong-coupled theory with u* =0.
The straight-line fit determines the constants {1.04 and 1.45) in
the theoretical formula [ (Eq. (18) 3.
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action; the third term from the Coulomb interaction is
A¥0)=—[N(0)V./Z(0}]
X{ Ao In{w/Te) +A, In(Ep/wn) J.  (8)

At high energies the only contribution is from the
Coulomb interaction: ‘

A(o)=—[N(O)V./Z(=)]

X[Ao In (wo/Tc) +Am IH(EB/OJ()}]. (9)
The renormalization is easily found to be
Z(0) =147, Z(w)=L (10}

We satisfy our consistency requirement at low and high
energies:

A(0) =4,
=[AN/Z(0)] In(wy/ Te) +[Ac/Z(0) J({e0)/wo) A
— [N (0)Ve/Z(0) JLAo In(wo/ Te) +A In( Ep/wn) ],

(11)
Alwo)=4,
= —N(0) V[AsIn(wo/Te) +4, In( E/e) ]
_ N(0) Voo In{ea/Te)
1+N(0) V. In( Eg/wa)
= = u*B0 In{wo/Tc), (12)

where p* is the Coulomb pseudopotential of Morel and
Anderson®

N(O)V,

K= TEN () Vo In( Enfo) (19
Substituting (12) into (11), we find
A= A —p*— ¥\ () /o) ] In(en/ T) e

142

The strong-coupling formula analogous to Eq. (1) is
then

— = exp ” 2]
wo A= p*— ({e)/00) At

In weak coupling (A1), Eq. (15) reduces to the BCS
result with A—g* playing the role of N (0) V. The strong-
coupling features are (1) that the interactions are
renormalized by Z=1+\ and (2) that the Coulomb

interaction changes the gap function in such a way that
the phonon contribution is reduced from A to

AL1— ({w)/wo) u*].
IIL. NUMERICAL RESULTS

In order to find a more accurate solution of the gap
equation, we go to the computer. We solve Eq. (2) by

(15)
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TaBLE I. Values of the coupling constant A for various values of
the Coulomb term u* and transition temperature T, (in °K).

7 * 0 0.088 0.149 0.157 0.245
20 0.83 1.12 1.34

15 0.68 0.93 1.12 1.47
10 0.55 0.75 0.91 1.20
5 0.40 . 0.58 0.72

1 0.25 0.39 0.50

0.1 0.16 0.28 0.38

0.001 0.09 0.25

a simple iterative procedure. We write (2} in the form
Busa(0) = [ do! K(w, o) 0n(a),  (16)

and choose A;(w) to be the solution found in Sec. II.
We substitute Aj(w) into the right-hand side of (16)
and perform the indicated integration to find Aq{w),
which is, we hope, closer to true solution. We find, in
fact, that after four to eight iterations, A(w) has con-
verged in the third decimal place. During the iteration
it is convenient to fix T, and u* and to adjust o? at each
stage so that A,;1(0) =A,(0). We must choose a par-
ticular o?{w,) F(w,), and, since we will be interested in
the bcc transition-metal alloys in the next section, we
take F(w,) to be the phonon density of states of Nb
found from the neutron work.”? o*(w,) is taken to be a
constant of over most of the phonon spectrum; however,
we take o?F(w)=0 for «<100°K to eliminate the
coupling to the long-wavelength transverse phonons
(see Fig, 4). We have performed the numerical calcula-
tions for several values of T, and p* with T, in the
range 1073 °K < T.<20°K and u* between 0 and 0.2.
The results for A for various values of T, and u* are
given in Table I. Instead of plotting the numerical data
as a family of curves, we will use the analytic formula
{(15) to fit the data. A plot (Fig. 1) of In(®/T.) versus

dp [ &Y
Ur 4 g 21rﬁ)3'l)p

o{w)Flw)= [S

(14+X) /A for u*=0 yields a straight line with a slope of
1.04 and an intercept of 0.37= In1.45. In order to
determine the comstant {w)/wp from the numerical
data, we plot in Fig. 2 the quantity

1.04(14A) N

4 (x ln(@/1.45Tc)) / K (1n
[which should be equal to 14 ({w)/ws)A] versus A. A
straight line with a slope of {(w)/wy=0.62 and an
intercept of 1 provides a good fit to the numerical data.
The scatter of the points about the straight line is
partly due to numerical inaccuracies of the computer
program which are magnified in taking the difference to
calculate y. The final formula for the transition tem-
perature is then

6 [ 1.04(140) ] as)
T 145 P T X106 |

We have used the Debye O for the characteristic phonon
frequency. We could just as well have used the maxi-
mum phonon frequency wy or the average phonon
frequency {(w) [see Eq. (24) below]. For niobium,
0=277°K, wy=330°K, and {(w};=230°K. We illustrate
the accuracy of this analytic formula by plotting
¥ =1.04(14+X)/In(©/1.45T,) versus X in Fig. 3. The
analytic formula gives the family of straight lines
y'=—p*+(1~0.62u*}) for a fixed u*. The numerical
data points (for the same u* values) are shown by
crosses. The analytic formula does give a good fit to
the numerical values over a wide range of parameters.
The energy-gap function A{w) for a typical set of
parameters (A=0.91, p¥*=0.149, T.=10°K} corre-
sponding roughly to those of Nb is shown in Fig. 4,
together with the phonon density of states of Nb.
Since we will find empirical values of A in the next
section, we are interested in the definition of A in terms
of the electronic matrix elements and the phonon fre-
quencies. We have used a?(w) F(w), which is defined by

St w=ap) | fs 2, (19)

c

where the integral [ d%p is taken over the Fermi surface and the electron-phonon matrix elements are given by
Epp'y= (ﬁ/zMNV‘-"p—p’v)mgv(P: 2, (20)
where 4,(pp’) is the electronic matrix element of the change in the crystal potential U as one atom is moved:

8.(02)= [ s (eparrt VWt Y

Note that g* is inversely proportional to the phonon energy w, ,, so that the first moment of o?(w)F{w) is in-

dependent of the phonon frequencies:

[:d”"’“z(“’)F(‘“)= /dzpf (27) %25’ Z,zzMilwg'zw’) /f%)

_ NO)R(E)

2M

(22)

2Y. Nakagawa and A. D. B. Woods, Phys. Rev. Letters 11, 271 (1963).

M. M. Ziman, Electrons and Phonons (Oxford Umver51ty Press, London, 1960}, p. 182,
8
&

h W
3
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Here (9%} is the average over the Fermi surface of the
square of the electronic matrix element (21). Finally,
from the definition of A, we have '

_ dw o?(w) F(w)  N(0) {g%)
7\—2[ w - M)y '

(23)

where (w?) is an average of the square of the phonon
frequency: .

)= fdwwaz(w)F(w)/fw

The transition temperature (18) depends on the
isotopic mass®®® directly through the factor ® and im-
plicitly through the wy dependence of p* Using (18)
and (13), we find T, =« M—=, with

_ ;(1“ (1+>\)(1+o.6z>\)w)
“T 2 [A—u*(140.62))

1 ® \?140.62\
= -|1= (u* 25
2[1 (‘“ In 1.45Tc) 14\ ] (23)

which differs very little from the weak-coupling result.

The velocity of electrons near the Fermi surface is
renormalized by the electron-phonon interaction. To
see this, we find the self-energy for electrons in the
normal state [Eq. (2a) ] for T=0 and «<ws:

(24)

£(w)— e (26)

The energy of the electronic excitations is determined

from the poles of the Green’s function, or from
w—eg—E(w) =0, (27)

where ¢, is the energy of the Bloch state (measured from
the Fermi energy) with momentum k. Substituting

2.0

i.0 ) .
o} 0.5 1.0 .5

Fic.2. The qﬁa.ntity ydefined in Eq. (17) versus ; the straight-
line fit determines the third parameter (0.62) in the theoretical
formula [Eq. (18)].

®J. W. Garland, Jr., Phys. Rev. Letters 11, 114 (1963).
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1.0

y -5 / R
/+%
R
N
i
/ I 1
0 0.5 1.0 1.5

Fi6. 3. The guantity v =1.04(14+3)/In{6/1.45T;) versus A
according to {+-+), the computer program, and (——), the
analytic formula [Eq. (18)7, demonstrating that the analytic
formula does fit the numerical results.

(26) into (27), we find for the energy w of the elemen-
tary excitation,

w=e/(14N). (28)

The electronic heat-capacity coefficient ,%!® the cyclo-
tron masses,'”38 and the Fermi velocity measured in the
Tomash-Rowell experiments'®? are all renormalized by
the factor (14-).

This completes the theoretical portion of the paper,
and we will summarize the results. Qur central result is
Eq. (18), which expresses T, in terms of a characteristic
phonon energy O, the electron-phonon coupling con-
stant A, and the Coulomb “pseudopotential” u*. This
formula was derived from accurate numerical solutions
of the integral equations of the (accurate) theory of
superconductivity with, however, a special assumption
about the shape of the phonon density of states. The
superconductor was assumed to be isotropic, but this is
not a serious approximation. The definitions of A and
r* in terms of the basic metallic properties are given in
Egs. (23) and (13). Several observable properties of the
metal are modified from their “band-structure” values
by the electron-phonon interaction. The velocity of
electrons near the Fermi surface is reduced by the
factor (142) ; this velocity is measured in the Tomash-
effect experiments. The electronic heat capacity and
cyclotron mass are enhanced by the factor (1-A).
The cyclotron-mass enhancement is in fact anisotropic

16 (. M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 43, 1005 (1962)
{English transl.: Soviet Phys. —JETP 16, 780 (1963) I

17 5. Nakajima and M. Watabe, Progr. Theoret. Phys. (Kyoto)
30, 271 (1963).

B R. E. Prange and L. P. Kadanoff, Phys. Rev. 134, A566
(1964).

¥ W, J. Tomasch, Phys. Rev. Letters 15, 672 (1965}; 16, 16
(1966). '

» W. L. McMillan and P. W. Anderson, Phys. Rev. Letters 6,
85 (1966).

u'W, J. Tomasch and T. Wolfram, Phys. Rev. Letters 16, 352
{1966).

B ] M. Rowell and W. L. McMillan, Phys. Rev. Letters 16, 453

{(1966).
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Fic. 4. The real (—) and imaginary (—--) parts of the
energy-gap function versus energy at the transition temperature
for parameters (T,=10°K, A=091, *=0.149) corresponding
rouggly to niobium, together with the phonon density of states
for niobium used in the calculations,

and will vary from orbit to orbit; A is an_isotropically
averaged quantity, and {1+A} gives an average en-
hancement factor. The strong-coupled formula (25)
for the isotope shift was obtained directly from (18)
and (13), and is numerically very close to the weak-
coupling result.

Iv. EMPIRICAL RESULTS

We begin now the empirical portion of the paper,
making use of the theoretical equations and experi-
mental results to extract the coupling constants A and
p*. We first determine u* for those few metals for which
the isotope shift has been measured. Then, taking
reasonable values of y* for the other metals, we will
find empirical values of A from 7, and ©. Finally, we
use these empirical numbers for A to estimate the
“‘phonon enhancement” of the electronic heat capacity
« and deduce from the measured v the bare or “band-
structure” electronic density of states at the Fermi
energy. '

Neglecting the  “strong-coupling”  correction
(140.627)/(14X) in Eq. (25), we find an expression for
the Coulomb pseudopotential u* in terms of the isotope-
shift coefficient «, the transition temperature, and the
Debye O:

= (1—2a)1/1n(0/1.45T,). (29)

e
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The experimental values of «, 7., and ® are given in
Table II, together with the empirical value of u* ob-
tained using Eq. (29). For the transition metals, we see
that there is some variation about the average value of
u*=0.13. The higher T, transition metals have higher
densities of states and smaller effective bandwidths, and
somewhat larger values of u* are appropriate. However,
for these metals, u* is less important relative to A, and
we take below the value 0.13 for all transition metals.
For the nearly-free-electron metals, the theoretical
estimate p*=0.1 is reasonable, and this is confirmed by
the empirical p* for zinc.

Next, we rewrite Eq. (18) in a convenient form for
finding an empirical electron-phonon coupling constant
A from the experimentally determined transition
temperature T, and Debye ©:

B 1.04+u* In(©/1.45T.)
T (1—-0.62u%) In(©/145T,)—1.04"

Here we use *=0.13(0.1) for the transition (poly-
valent) metals. The experimental T and @ are listed in
Table III for the superconducting metals, together with
the empirical coupling constant A found using Eq. (30).
The coupling constant found in this way is reliable for
weak and intermediate coupling strengths A <1. How-
ever, for the strong-coupled case A>1, the resulting X is
sensitive to the details of the phonon spectrum, and it is
desirable to have more information about the phonon
density of states than just the Debye ©.For lead, where
the phonon density of states is known from the analysis
of the tunneling experiments to be quite similar to
that for niobium, Eq. {30) works reasonably well; the
coupling constant deduced from the tunneling data is
1.3, and Eq. (30) yields 1.1. For mercury, however,
the tunneling experiment yields a phonon spectrum
quite different from niobium, and Eq. (30) fails; the
tunneling experiment gives A=1.6, whereas Eq. (30}

(30)

TasLe II. Empirical values of the Coulomb pseudopotential u*
found from the isotope shift «, 7., and © using Eq. (29).

T. o

Metal a (°E) (°K) u*  Reference
Zr 0.000.05  0.35 200 0.17 a

Mo 0.37+0.04 0.92 460 0.09 b

Re 0.38 1.69 415 0.10 C

Ru 0.0+0.15 0.49 - 550 0.15 d, e
Os 0.21 0.65 500 0.12 e

Zn 0.300.01 0.85 309 0.12 f

3 E_ Bucher, J. Muller, J. L. Olsen, and C. Palmy, Phys. Letters 15, 303
(1965).

b B, T. Matthias, T. H. Geballe, E. Corenzwit, and G. W. Hull, Jr.,
Phys. Rev. 129, 1025 (1963}; E. Buncher and C. Palmy, Phys. Letters
24A, 340 (1967).

¢ E. Maxwell, Rev. Mod. Phys. 36, 144 (1964).

d T, H. Geballe, B. T. Matthias, G. W. Hull, Jr., and E. Corenzwit, Phys.
Rev. Letters 6, 275 (1961); D. K. Finnemore and D. E. Mapother, ibid.
9, 288 (1962); J. W. Gibson and R. A. Hein, Phys. Rev. 141, 407 (1966).

© T. H. Geballe and B. T. Matthias, IBM J. Res. Develop. 6, 256 (1962) ;
R. A. Hein and J. W. Gibson, Phys. Rev. 131, 1105 (1963).

! R. E. Fassnacit and J. R. Dillinger, Phys, Rev. Letters 17, 255 (1966).
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Tazsre ITT. Empirical values of the electron-phonon coupling constant A and the “band-structure” density of states
Npa(0) found from 7., 6, and v for the superconducting metals.

¥ Npa(0)
7. o (mé'[/mole {states/

Element (°K) (°K) K2 A eV atom) Nio(0) /N1 (0) Reference
Be 0.026 13990 0.184 0.23 0.032 0.31 a,b
Al 1.16 428 1.35 0.38 0.208 1.08 c
Zn 0.85 309 0.64 0.38 0.098 0.61 d
Ga 1.08 325 0.60 0.40 0.091 0.46 e
Cd 0.52 200 0.69 0.38 0.106 0.53 e
In 3.40 112 1.69 0.69 0.212 0.89 f
Sn 3.72 200 1.80 0.60 0.238 0.82 g
Hg 4.16 72 1.79 1.00 0.146% 0.70 h
Tl 2.38 79 1.47 0.71 0.182 0.66 h
Pb 7.19 105 3.00 1.12 0.276* 0.87 i
Ti 0.39 425 3.32 0.38 0.51 ik
Vv 5,30 399 9.9 0.60 1.31 ik
Zr 0.55 290 2.78 0.41 0.42 I,k
Nb 9.22 277 7.8 0.82 0.91 k
Mo 0.92 460 1.83 0.41 .28 - ik
Ru 0.49 550 3.0 0.38 0.46 ik
Hf 0.09 252 2.16 0.34 0.34 Lk
Ta 4.48 258 6.0 0.65 .77 ik
W 0.012 390 0.90 0.28 0.15 m,k
Re 1.69 415 2.3 0.46 0.33 i, k
Os 0.65 500 2.3 0.39 0.35 )k
Ir 0.14 420 3.2 0.34 0.51 )k

® R. L. Falge, Jr., Phys. Letters 24, 579 (1967).

b E. Gmelin, Compt. Rend. 259, 3459 (1964).

¢ Norman E. Phillips, Phys. Rev. 114, 676 (1959},

4 G, Seidel and P. H. Keesom, Phys. Rev. 112, 1083 (1958).

® Norman E. Phillips, Phys. Rev. 134, A385 (1964),

f H. R. O'Neal and N. E. Phillips, Phys, Rev. 137, A748 (1965).

€ C, A. Bryant and P. H. Keesom, Phys. Rev. 123, 401 (1961).

b B. J. C. van der Hoeven, Jr., and P. H. Keesom, Phys, Rev. 135,
A631 (1964,

gives A=1.0. The point is that whenever Eq. (30)
yields a coupling constant greater than 1 and there is no
information available for the phonon density of states,
the results should be treated with some caution.

The electronic heat-capacity coefficient v is propor-
tional to the electronic density of states at the Fermi
surface (the “band-structure” density of states) times
the enhancement factor (14A) from the electron-
phonon interaction. If A and » are known, we can find
the band-structure density of states Npo(0):

Npa(0) =3y /2m2kz2(1+)). (31)

Strictly speaking, N'(0) contains the enhancement due
to the Coulomb interactions between electrons. In
Table III are Jisted the experimental heat capacity v
and the empirical electronic density deduced from Eq.
(31) and the empirical coupling constant A.2 For lead
and mercury, we have used the A found from the
tunneling experiments. For the polyvalent metals, we
list the ratio of Nu{0) to the electronic density of
states at the Fermi surface from the free-electron
model

Nw(0)=3(Z/Ep),

where Z is the valence and Ep the Fermi energy.

® 1. W. Garland, Jr., has performed a similar service (to be
published).

(32)

o

Tgge

PR, J. C. van der Hoeven, Jr., and P. H. Keesom, Phys. Rev. 137,
A103 (1965).

i B, W. Roberts, Progress in Cryogenics {Heywood and Co., Ltd., London,
1964).

k F. Heininger, E. Bucher, and J. Muller, Physik Kondersierten Materie
5, 243 (1966).

V¥, Andres (private communication).

™ R. T. Johnson, O. E. Vilches, J. C. Wheatley, and S. Gygax, Phys.
Rev. Letters 16, 101 (1966).

This procedure for extracting the band-structure
density of states is particularly interesting when the
experimental data (T, ©, v) are available for a series of
alloys with the same crystal structure. Consider the
bce alloy system Ta-W. According to the rigid-band
model, which seems quite reasonable for the alloy
svstems considered here, the band structures of Ta and
W are very similar, and in alloying from Ta to W, one is
merely increasing the Fermi energy so that the volume
contained in the Fermi surface increases from 5 elec-
trons/atom to 6 electrons/atom. Using the same
procedure described in the above paragraphs for metals,
we can find the band-structure density of states at the
Fermi energy for each alloy and plot out the band-
structure density of states as a function of either
electron/atom ratio or energy. It is quite reasonable to
compare this empirical density of states versus energy
curve with that calculated from the computed band
structure of either Ta or W. There are sufhcient data
avajlable to construct the density of states VErsus
electron/atom ratio for four alloy series of the transition
metals.

(1) Nps(0) for the bee 3d transition-metal alloys of
Ti-V and V-Cr are given in Table IV and plotted in
Fig. 5. The V—Cr alloys with more than 60%, Cr are not
superconducting above 0.025°K, and the coupling con-
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Taere IV. Empirical values of A and Ny,(0) found from T., ©, and v for the bec 3¢ transition-metal alloys and for “paramagnetic®
chromium, The values of A in parentheses were obtained by extrapolation. -

Nua(0)

Y
9% second T, 6 (mJ/ mole (states/
Alloy metal (°K) (°K} K?) A eV atom} Reference
Tiv 20 3.5 6.9 0.54 0.95 a
. 30 6.14 10.0 0.62 1.3t a
50 7.30 10.8 0.65 1.39 a
75 7.16 10.6 0.65 1.36 a
85 7.02 10.3 0.65 1.32 a
VCr 10 3.21 370 8.15 0.53 1.13 b
20 1.90 40() 7.135 0.48 1.02 ~ b
25 1.36 425 6.75 0.45 0.99 b
40 0.37 450 5.4 0.38 0.83 b
50 0.10 47Q 4.85 0.33 0.77 b
60 <0.025 4.0 (0.28) 0.67 b
20 2.1 (0.20) 0.37 C
%0 2.07 (0.20) 0.37 c
94.5 2.33 (0.20) 0.41 c
“Cr? 2.9 (0.23) 0.49 c
& C. H. Cheng, K. P. Gupta, E. C. van Reuth, and P. A. Beck, Phys. Rev. b K. Andres and E. Bucher (private comnunication).
127, 2030 (1962). ) © F. Heiniger, Physik Kondensierten Materie 5, 285 {1966).

stants are found by extrapolation. The v value for Cris V and Fig. 6). We have used, in addition, the 4d-5d
that for “paramagnetic” Cr found by extrapolating the alloys of Mo-Re which should give Nps(0) values
= for paramagnetic Mo—Cr alloys. reasonably close to Mo-Tc. Heiniger ef al.* have noted

(2) The most complete data are for the bce 44 transi-  that the v values for Zr-Rh alloys appear to lie on the
tion-metal alloys of Zr-Nb, Nb-Mo, and Mo-Tc (Table same curve as for the Zr-Nb alloys, and we have in-

Tasiz V. Empirical values of A and Ny, (0) found from T, ©, and  for the bec 44 transition-metal alloys.

Nua(0)

v
o7, second T. 2] (mJ/mole (states/
Alloy metal (°K) {°K} °K?) X eV atom) Reference
ZrNb 30 9.3 238 8.3 0.88 0.93 a
73 10.8 246 8.9 0.93 0.98 a
! NbMo 15 5.85 265 6.3 0.70 0.79 b
40 0.60 371 2.87 0.41 0.43 b
60 0.05 429 1.62 0.31 0.26 b
70 0.016 442 1.46 0.29 0.24 b
3 80 0.005 461 1.49 0.33 0.24 b
! 90 0.30 487 1.67 0.36 0.26 b
|
i MoRe 5 1.5 450 2.2 0.45 0.32 c
10 2.9 440 2.6 0.51 0.36 c
; 20 8.5 420 3.8 0.68 0.48 c
30 10.8 395 4.1 0.76 0.49 c
40 12.6 340 4.4 0.86 0.50 ¢
! 50 11.5 320 4.4 0.85 0.50 c
‘ MoTc 50 12.6 300 4.6 0.91 0.51 ¢
‘ ZrRh 3 3.1 244 3.62 0.59 0.48 d
! 4 3.8 226 3.83 0.64 0.50 d
! 5 4.8 210 5.08 0.70 0.63 d
: 6 5.75 196 6.80 0.78 0.81 d
‘ 7 5.95 192 7.36 0.80 0.87 d

& |, Heiniger, E. Bucher, and J. Muller, Physik Kondensierten Materie b B, W. Veal and J. K. Hulm, Ann. Acad. Sci. Feanicae A210, 108
%, 243 (1966); R. D. Blangher, J. K. Hulm, J. A, Rayne, B. W. Veal, (1966). '
and R. A. Hein, in Proceedings of the Eighth Iniernational Conferemce on ¢ F. J. Morin and J. P, Maita, Phys. Rev. 129, 1115 (1963},
Low-Temperature Physics, London, 1962, edited by R. Q. Davies (Butter- d G, Dumimer, Z. Physik 186, 249 (1965).
worths Scientific Publications, Ltd., Londen, 1963).

% F. Heiniger, E. Bucher, and J. Muller, Physik Kondensierten Materie 5, 243 (1966).
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167 STRONG-COUPLED SUPERCONDUCTORS
1.0}
10 bec
bce
LA )
o5l hep
N, (0 i
T oS
] § I 1
4 5 3 7 8
Hf Ta w Re Os
Fic. 7. The band-structure density of states versus elec-
| . tron/atom ratio for the bec and hep 54 transition-metal alloys
0% 5 5 from the data in Tables ITI and VI,
T v cr

Fic. 5. The band-structure density of states versus elec-
tron/atom ratio for the bee 34 transition-metal alloys from the
data in Tables ITI and IV.

cluded those data as well, although it is by no means
clear that the rigid-band model is valid for alloys of
metals whose valence differs by 5.

(3) The values of Ny.{(0) for the bee 54 alloys of
Hi-Ta, Ta-W, and W-Re, as well as the hcp 5d alloys
of W-Re and Re-Os, are given in Table VI and plotted
in Fig. 7. Again it is necessary to interpolate for A where
the T has not been measured. The densities of states of
the three bee alloy series are similar, exhibiting a peak
for electron/atom. ratio #=4.5, a deep minimum near
n=>5.8, and a shoulder at »=6.2. Figure 8 shows a plot
of the electron-phonon coupling constant A versus
electron/atom ratio, and Fig. 9 gives A plotted versus
density of states for these alloy series.

It is most interesting at this point to compare our
empirical results with the theoretical density of states

10F

05+

0 1 1
4 5 & 7

n (ELECTRONS / ATOM)

F1c. 8. The empirical electron-phonon coupling constant versus

electron/atom ratio for the bec 3¢ (OO 0), 44 (@ @@), and 34
(C1000) transition-metal alloys frem the data in Tables ITT-VI.

10+
1.0}
Cd
’.
] 4
] bce
| A
' b~
Nhatm [ 0.5
0.5 of
t ]
4] Q.5 1.0 1.5
o‘ 5 Is T Npe 01 { States/eV atom)
Zr Nb Mo Te

tRe)

Fi1c. 6. The band-structure density of states versus elec-
tron/atom ratic for the bec 44 transition-metal alloys from the

data in Tables IIT and V.

&%

FI1c. 9. The empirical electron-phonon coupling constant versus
the band-structure density of states for the bee 3d (OOOQ), 44
(@9®),and 5¢ (J00ODO) transition-metal alloys from the data in
Tables ITI-IV.
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TaBre VI. Empirical values of A and Ny, (0) found from T, @, and ~ for the bee (*hep) 5d transition-metal alloys.
The values of A in parentheses were obtained by interpolation. :

v N (0)
% second T, ) (mJ/mole (states/

Alloy metal (°K) {(°K) K% Y eV atom) Reference
Hi-Ta 70 6.81 209 8.30 0.82 0.97 a,b
To-W 16 1.85 265 4.36 0.51 0.61 a, b

40 : 291 3.08 (0,39 0.47 a
60 317 1.63 {0.25) 0.28 a
a0 354 0.88 {0.26) 0.15 a
20 368 0.92 (0.27) 0.15 a
W-Re 5 330 1.14 (0.32) .18 a
7.5 378 1.40 (0.38) 0.21 a
10 0.7 375 1.63 0.42 0.24 a, b
15 2.26 365 2.10 0.50 0.29 a,b
20 3.20 359 2.20 0.54 0.30 a,b
25 4.64 351 2.30 0.60 0.30 a, b
W-Re* 88 7.47 332 3.76 0.70 0.47 a,b
Re-0Os* 30 1.45 351 2.05 0.47 0.30 a,b
ReOs* 70 382 1.86 (0.42) 0.28 2

8 BE. ¥, Bucher, F. Heiniger, and J. Muller, in Proceedings of the Ninth
International Conference om Low-Temperature Physics, Columbus, Ohio,

from band-structure calculations. Matthies® has calcu-
lated the band structure of tungsten using the aug-
mented plane-wave (APW) method for two potentials
(labeled W, and W), and has computed the electronic
density of states versus energy. Figure 10 shows the
theoretical density of states for potential W, together
with the empirical density of states {solid circles) for
the Hf-Ta-W-Re alloys from Tables III and VI. For
the empirical data, the energy was determined from the
electron/atom ratio, using the theoretical curve {dotted
line of Fig. 10". As can be seen in Fig. 10, the agreement
between the theoretical and empirical densities of states
15 excellent for this potential (W,). The ¢ band is about
259, narrower for potential W, than for W5, and the
density of states correspondingly higher. The shoulder
at #=6.15 (Fig. 7) or at E=1.17 Ry (Fig. 10) is a
critical point and can probably be identified with the
saddle point in the Matthies band structure about
half-way between the symmetry points H and ¥ and
lying just above the tungsten Fermi energy.

Matthies® has also computed the band structure and
electronic density of states for hcp rhenium using the
relativistic APW method. The theoretical density of
states is in good agreement with the empirical data for
the hcp W-Re-Os alloys (see Fig. 5 of Ref. 26).

V. ELECTRON-PHONON COUPLING
CONSTANT

Having found empirical values of the electron-phonon.

coupling constant A for a number of metals and alloys,
we now wish to investigate the dependence of the
coupling constant on the various metalilic properties.

51, F. Matthies, Phys. Rev. 139, A1893 (1965).
* 1. F. Matthies, Phys. Rev, 151, 450 (1966).

8 &
s %

edited by J. A. Daunt e ¢l. (Plenum Press, Inc., New York, 1965}, p. 1059.
b E. Bucher (private communication).

A, Empirical Results

According to Eq. (23), in order to calculate the
coupling constant, we need to know the electronic

- density of states Ny,(0), an average phonon frequency

{w), and an average squared electronic matrix element,
(9?). The least accessible of these quantities is the last,
{g?), and we will first adopt the empirical approach and
determine {42) from the experimental data for A, ¥ (0),
and {w). For this purpose the Debye © does not provide
a sufficiently reliable estimate of the average phonon
frequency, and we must restrict this discussion to those
metals for which neutron scattering or electron tun-
neling measurements of the phonon frequencies are
available. The phonon density of states of Nb (Fig. 4)
is typical for fcc and bec lattices, and for that case the
average phonon frequency [Eq. (24) ] is approximately
the mean of the frequencies of the longitudinal and
transverse peaks. In Table VII we give the average
phonon frequency found in this way, together with the
empirical A and N (0) values from Table III for the bce
transition metals, three polyvalent metals, and V;Si.
From these three empirical quantities, we find the
empirical values for (4?) given in Table VII by re-
writing Eq. (23)

(8*)=D\M (#)/N(0)]. (33)

- Dimensionally, 4 is an electronic quantity with units of

energy/length. The characteristic energy-—the elec-
tronic-bandwidth or Fermi energy—is of the order of a
few electron volts, and the characteristic length is the
lattice spacing, a few angstroms; we expect 4 to be a few
eV/A, as observed. Note that for the bec transition
metals, N(0) {92} (Table VII) is constant ~7 eV/ Az
within experimental uncertainty, even though ¥ (0) and
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F1G. 10. The theoretical band-structure density of states versus energy for tungsten according to Matthies (Ref. 25), together with the
empirical (solid-circles) data for the bee 54 alloys from Tables ITI and VI

(¢%) individually vary by a factor of 10 [for vanadium constant and that the coupling constant (or transition
N(0) {9?) is somewhat low, but the uncertainty in (9?) temperature) is governed by the phonon factor M{?)
because of the uncertainty in -{«) is greater]. Thisisa or by the stiffness of the lattice. This is in marked con-
remarkable result: We find empirically that for this class  trast to the statement that is usually made—that the
of materials, the electronic factor N(0){¢?) remains coupling constant (or transition temperature) is

TasLe VIL. Empirical values of the average electronic matrix element (§*) found from A, Nea(0), and {u? W using Eq. (33).
The T, ©, and v values are taken from Table IIL

¥ Nea(0)
T, (m]/ (states/ {2 2 (&) N0y g%
Metal (°K) (°K) mole °K?) A eV atom) (°K) (eVE A~ (eV A-9) Reference
v 5.30 399 9.9 0.60 1.31 290 3.5 4.6 a
Nb 9.22 277 7.8 0.82 0.91 230 7.9 7.2 b
Ta 4.48 258 6.0 0.65 0.77 170 7.9 6.1 c
Mo 0.92 460 1.83 0.41 0.275 310 24.6 6.8 d
W 0.012 390 0.9 0.29 0.148 250 42.5 6.3 €
Al .16 428 1.35 0.38 0.206 330 9.7 2.0 i
In 3.40 112 1.69 0.71 0.21 110 8.4 1.76 g .
Pb 7.19 105 3.00 1.12 0.300 75 7.8 2.3 h,i
VaSi 17 520 213 0.82 2.33i 390 4.9 11.3 k1
® X, C. Tuberfield and P, A. Engelstaff, Phys. Rev, 127, 1017 (1962), b B, N, Brockbouse, T. Arase, G. Caglioti, K. R. Rao, and A. D. B.
b Y. Nakagaws and A, D. B. Woods. Phys. Rev. Letters 11, 271 (1963).  Woods, Phys. Rev. 128, 1099 (1962).
¢ A. D. B. Woods, Phys. Rev. 136, A781 (1964). !'W. L. McMillan and J. M. Rowell, Phys. Rev, Letters 14, 108 (1965).
d A D. B. Woods, and S. H, Sher, Solid State Commun. 2, 223 (1966). - Per vanadium atom rather than per molecule,
© S, H. Shen and B. N, Brockhouse, Solid State’ Commun. 2, 73 (1964). k I, E. Kunder, J. P. Maita, H. J. Levinstein, and E. J. Ryder, Phys.
! R. Stedman and G. Nilsson, Phys. Rev, 145, 492 (1966). Rev. 143, 390 (1966).
£ J. M. Rowell and W. L. McMillan (to be published). | Bernard Mozer (private commuuication).
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governed by the electronic density of states, being
given by A=XN(0)Vph, with ¥V, reasonably constant.
The coupling-constant variation is certainly correlated
with the density-of-states variation, but only because
the high-density-of-states materials are -elastically
softer. We have at present no theoretical explanation of
this fact; we have only the empirical observation for
these five bee transition metals,

B. Theory for the Simple Metals

For the polyvalent metals (e.g., Al, In, Pb), the
pseudopotential theory?—* enables one to calculate all
the properties of the metal from a knowledge of the
electron-ion pseudopotential. One can calculate the

Fermi surface, the electron-phonon matrix elements,

and the phonon frequencies. We do not intend to per-
form detailed calculations here, but rather we will
discuss how the coupling constant depends on the
pseudopotential, and will obtain some rather simple
results.

Within the pseudopotential model, the Hamiltonian
of the metal is the sum of (1)} the kinetic energy of the
electrons, (2) the Coulomb interaction between elec-
~ trons, (3) the kinetic energy of the bare ions, (4) the
Coulomb interaction between ions, and (5) the bare
electron-ion interaction given by the pseudopotential
V(R;—r.). This bare atomic pseudopotential is screened
by the conduction electrons, and in momentum space
the screened potential is just v,/e,, where v, is the
Fourier transform of the bare pseudopotential, and ¢, is
the dielectric constant. With the atoms located on the
lattice sites, the crystal potential is just the sum over
lattice sites of this screened potential, and the Fermi
surface is determined by the values of 7,/¢, at the
reciprocal lattice vectors. For the metals of interest,
one finds a Fermi surface distorted slightly from the
free-electron sphere, and for this discussion we neglect
this distortion and take the wave functions to be plane
waves. The electron-phonon matrix elements are now
readily calculated from Eqs. (20) and (21). We find

8,(p, ) =i(P—D) *epp s¥pp, (34)

and, average 9° over the spherical Fermi surface, we

find
2k @ 2%
g2y = (egvq) 0 2gd / dg
( Z[ o q)0dg fo g

r ‘o
=3k ER (v), (35)
where Ep and kp are the Fermi energy and wave

7 J, C. Phillips and L. Kleiniman, Phys. Rev. 116, 287 (1959).
( % B, J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 127, 276
1962).

¥ W. A, Harrison, Phys. Rev. 126, 497 (1962) ; Pseudopotenticls

in the Theory of Metals (W, A. Benjamin, Inc., New York, 1966).
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number, and we have defined a dimensionless average
of the pseudopotential squared

wir= [ wigag [ [ witn

For the free-electron gas, the density of states of one
spin per atom is

(36)

N(0)=3Z/4Es, (37)

_Where.Z is the valence of the ion. Finally, expressing the

average phonon frequency in units of the ionic plasma
frequency

Qr=4rNZ*/M, (38)
we find an expression for the coupling constant
A=N(0){g*)/M ()
1 Ep (ﬂqz) (39)

T e (P00

The factor Ep/kré® is just 0.96/r;, where r, is the radius
in atomic units of a sphere containing one electron. We
find a simple expression for the electron-phonon
coupling constant for a nearly-free-electron metal,
involving a dimensionless average of the pseudo-
potential and a dimensionless phonon frequency:

st @)
T (@D

For lead, the tunneling experiments® yield the values
{?)/Q,2=0.02 and (v2)=0.04.

Within the pseudopotential model, the phonon fre-
quencies are also determined by the pseudopotential.
One starts with a calculation of the phonon frequencies
Q, of the bare ions and then subtracts the electronic
contribution FyZ, which is proportional to v (1—1/¢,) :

(41)

A (40)

w2=02— F.

The point that we wish to make here is that for the
polyvalent metals, there is a large cancellation between
the ionic term Q.2 and the electropic term E.? so that
the observed phonon frequencies are extremely sensitive
to small changes in E.? or in the pseudopotential (for
lead, the observed w are about 5 of the ionic term
Q.2 at the zone boundary). The important dependence
of the coupling constant A upon the pseudopotential
arises from the {(w?) term in the denominator of Eq.
(40), rather than from the (v?) in the numerator.
Thus, for the polyvalent metals, the pseudopotential
theory predicts that the coupling constant varies
inversely with the (dimensionless) phonon frequency
squared:

A=C/ ({e?)/27), (42)
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or, more approximately,

AC /M (*). (43)
From Table VII we see that C'=N{(0) (4%} is constant
within experimental accuracy for Al, In, and Pb.

To conclude this section, we (1) observe empirically
that for a given class (bcc) of transition metals the
coupling constant is equal to a constant divided by the
jonic mass times the average phonon frequency squared,
and (2) show theoretically for the polyvalent metals
that this should be the case.

VL MAXIMUM T,

For a number of years the highest observed super-
conducting transition temperature has been 18°K,®
the “Matthias limit.” There has been a great interest,
possibly for technological reasons, in the search for
higher T. materials. Recently Matthias ef al® have
found superconductivity at 20°K in a solid solution of
NbzAl and Nb;sGe. In that paper the authors state that
“there is no theory whatsoever for high transition
temperatures of a superconductor.” In this section we
discuss an upper limit for the transition temperature of
a given class of materials.

The strong-coupled theory of superconductivity will
predict accurately the transition temperature of a metal
from its fundamental properties. The difficulty in
trying to predict a maximum 7. is that one does not
have an accurate theory of metals from which to
calculate the band structure, the phonon spectrum,
etc. We can, however, make use of the observation of

1.0

F1G. 11. The superconducting transition temperature according
to Eq. (18) with px*=0.13, assuming that the coupling constant
obeys Eq. (45). Given the transition temperature and coupling
constant for 2 material, the maximum T, expected for similar
materials can be found from this graph.

' ®T H. Geballe, B. T. Matthias, J. P. Remeika, A. M. Clogston,
%g%bglompton, J. P. Maita, and H. J. Williams, Physics 2, 293

n B T. Matthias, T. H. Geballe, L. D. Loninotti, E. Corenzwit,
G. W. Hull, R. H. Willens, and J, P. Maita (to be published).
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Tasie VIIL. The predicted maximum superconducting transi-
tion temperature for four classes of materials found from the
observ;d T. and x and Fig. 11, together with the observed maxi-
mum Je.

T. T mosx Observed maximum
Metal {°K) X {°K) T. Material
Pb 7.2 1.3 9.2 2.8 Pb-Bi
Nb 9.2 0.82 22 10.8 Zr-Nb
Va5i 17 0.82 40
Nb;Sn 28 20 Nb;Al-Nb:Ge

the preceding section that, within a given class of
materials, the coupling constant depends mainly on the
phonon frequencies. Given the freedom to adjust the
phonon spectrum and therefore the coupling constant,
say, by alloying, we show here that T, has a maximum
value.

We begin with a simplification of the theoretical
formula for T.:

To~2 {w) exp[— (14+N) /A ]

Now, using the observation of Sec. V, we write for the
coupling constant

(44)

A=C/MF), (43)

where C is fixed for a given class of materials, e.g., for
the bec alloys in the neighborhood of Nb. We have

T.={w) exp[ — M (*)/C—1],

which takes orn its maximum value as a function of
{w) for {w)=(C/2M)2, and

(46)

Tmex= (C/2M)12e312, (47)
What is happening here is that we increase the coupling
constant to maximize the exponential factor in Eq. (44)
by decreasing the average phonon frequency. But the
average phonon frequency premultiplies the exponen-
tial, and the product is maximized for A= 2, It is useful
to express T./T,™= as a function of A:
T/ Tomax= (2/X)12e0i2=10,

This expression has a broad maximum at A=2 and falls
off sharply for A<1. In Fig. 11, we show T,/ T ==
calculated from the accurate expression for T [Eq.
(19) ] rather than from Eq. (44), and taking p*=0.13,
Given the T, and A for a given material, we can find the
maximum 7. for a class of “‘similar” materials from Fig.
11. The theoretical maximum 7T, (Table VIII) for
Pb-like materials, that is, for the lead-based alloys, is
9.2°K, and there is in fact a Pb-Bi alloy with T,=
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8 8°K 2 For Nb-like materials, the maximum observed

~ T, is about half the theoretical maximum. The value of
T.max for NbySn was found by scaling the T for
V,Si with the square root of the mass ratio.

There are a2 number of refinements of the theory of
T.max which should be attempted. The most important
one is to test the relationship [Eq. (45)] between the
coupling constant and the phonon frequencies for a
wider range of materials and also, of course, to attempt
to understand this result theoretically for the bcc
transition metals. We should note that we have extrap-
olated the theoretical formula [Eq. (18)] for T,
versus A, which was derived for A $1, to larger values of
M. The errors are probably not serious, but the calcula-
tions should be carried out for the extreme strong-
coupled case. We have assumed that the average
phonon frequency can be decreased indefinitely by (for
the pseudopotential model) cranking up the pseudo-
potential. Of course, this is not the case. We are likely
to drive some phonon mode unstable, so that the metal
prefers a different crystal lattice, before the average
phonon frequency is decreased very far. This would
set an upper limit on the coupling constant that one
could obtain experimentally and provide a stronger
upper bound on T. (a lattice instability of this nature
has been observed for V;Si).%# The fcc TI-Pb-Bi
alloys are an interesting case to study experimentally in
this respect, since the coupling constant is already
large for lead and apparently increases with bismuth
concentration.

VII. CONCLUSIONS

The central result of this paper is Eq. (18), which
relates the superconducting transition temperature to
the electron-phonon and Coulomb coupling constants
according to the strong-coupled theory of super-
conductivity. This theory is believed to be accurate for
real metals to lowest order in an expansion parameter
Fiwpn/ Ep~10"2-103. The equations were originally
derived for the Frohlich Hamiltonian, but recent
studies® 2 of the Coulomb interaction indicate that

# B, W. Roberts, Progress in Cryogenics (Heywood and Co,,
Ltd., London, 1964).

# B, W, Batterman and C. 5. Barrett, Phys. Rev. Letters 13,
390 (1964).

#u 1, Testardi, T. B. Bateman, W. A. Reed, and V. G. Chirba,
Phys. Rev. Letters 15, 537 (1963).

& E. G. Batyev and V., L. Pokrovskii, Zh. Eksperim. i Teor. Fiz.
46, 262 (1963) [English transl.: Soviet Phys—JETP 19, 181
{1964) 1.

s V). %Ieine, P. Nozieres, and J. W, Wilkins, Phil. Mag. 13, 741

1966).
( s R._ E, Prange and S. Sachs, Phys. Rev. 158, 672 (1967).
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the only effect of the Coulomb interactions is to re-
normalize the energy bands and the electron-phonon
matrix elements, and that the structure of the seif-
energy equations used here is correct. Band-structure
effects are properly included in the definition of A. We
have neglected the anisotropy of the energy gap, but
this introduces only a small error in T,. The effects of
persistent spin fluctuations, which are important for the
nearly ferromagnetic case, are believed to be unimpor-
tant for the metals considered here. These effects could
probably be included within the present formalism by
choosing a somewhat larger Coulomb term u*, We have
made one special assumption by using the phonon
density of states for niobium. This introduces important
errors only for the strong-coupled (A>>1) supercon-
ductor with a wildly different phonon spectrum. We
note that the strong-coupled theory has received strong
experimental support from the analysis of the tunneling
experiments on lead which probes the detailed structure
of the self-energy equations. We regard Eq. (18) as
just the numerical consequence of the established and
verified theory of superconductivity. We have made no
attempt to verify the theory of superconductivity in
this paper, but rather have used that theory to examine
the electron-phonon interaction in those metals which
are superconducting. Equation (18) proves to be very
useful in estimating the electron-phonon interaction
strength and in stripping away the “phonon enhance-
ment” of the specific heat and cyclotron mass to reveal
the “band-structure” values. We have examined the
variation of the coupling constant over limited portions
of the periodic table and have found -a surprising
result—namely, that the coupling constant depends
mainly on the phonon frequencies and is insensitive to
large variations in the electronic properties, e.g., the
band-structure density of states. This observation has
been used to predict a maximum transition temperature
for a given class of materials.
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