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cnergies' at which D(e) vanishes identically. In the
vicinity of these special energies the density of

states is shown to exhibit the type of essential singu-
larity suggested by Lifshitz.? Furthermore, it was
foupd that the envelope of the density of states associ-
ated with the special energies also displayed the
Lifshitz type of singularity.

\4. Schmidt, Phys. Rev. 105, 425 (1957).
1M, Lifshitz, Adv. Phys. 13, 483 (1964)

BK 4 The Brillouin Wigner Series,
Feenberg Perturbation Theory and the
Disorder ProblemT. SAMUEL P, BOWEN,
University of Wisconsin.--An' argument 1s”
outlined which suggests that the Anderson
analysis of localized electronic states -
in disordered materials does hot necessarily ’
predict the existence of localized states. B
Conditions for the convergence of the "I
Brillouin Wigner perturbation . series are
discussed within the context of the sl
substitutionally disordered alloy. . A
generalization of Feenberg's Perturbation
Theory is disvussed as a method of .
calculation of properties of disordered
alloys.

+Supported by Wisconsin Alumni Research
Foundation.

BK 5 Virtual-Crystsl Calculation of the Electronic
Structure of Pb;._,Sn,Te,* ROBERT H. LASSETER and

SOHRAB RABIT, Moore School of Eléctrical Englneering,
University of Pennsylvania--The electronic.structure

of Pbj_4Sn,Te pseudo-binary alloys has been calculated
using a virtual-crystal 1limit of the coherent potential
approximationl (CPA) in conjunction with relativistic
augmented plene wave (RAPW) formalism.

The results are in egreement with the 'band
inversion"” model of Dimmock et al.? and the composition
at which the principle gap goes to zero is In agreement
with experiment.

*3upported in part by Naval Ordnance Laboratory
Contract No. N60921-T0-C-0251, ARPA Order #1597,

1
Soven, Paul, Phys., Rev. B2, 4715 (1970).

2Dimmock, J. 0., Melngailis, I., and Strauss, A. J.,
Phys. Rev. Lett. 16, 1192 (1966 ).

BK 6 Improved Version of Cellular Method. B. I.
BENNETT, J. R. LEITE, and F. HERMAN, IBM Research,

San Jose.--We are developing a computationally simple
method for studying the electronic structure of com—
Plex crystalline solids and molecular clusters. In
our approach, the various atoms are contained in (over-
lapping) equivalent volume spheres, with boundary con-~
ditions imposed along the circles defining the inter-
sectiong of these spheres, and elsewhere as required.
We are attempting to determine the minimum boundary
condition requirements consibtent with physically and
mathematically acceptable solutions, as well as the
role played by various potential approximations. This
information will guide our progress from simple test
cases such as diamond to more complex systems. Pre-
liminary results for the diamond erystal will be re-
ported and compared with earlier cellular-type
calculations.l

BK 7 KKR Band Structure Calculations for Complex
Crystals.® J. 8. Faulkner, Oak Ridge National Laboratory--
A formula for KKR structure constants for crystals having
more than one atom per unit cell which has the advantage
that the major computational effort is spent only on cal-

'BK 8

- another and 1s calculated by averaging over possible

-for

culating the relatively small number of structure con-
stants for the associated Bravais lattice was derived by
the euthor from simple manipulations of the basic KKR -
equations.™ A new derivation of this formula on the
basis of multiple scattering theory has been carried out
which makes the meaning of the terms more transperent.
This new derivation will be discussed along with a com-
parison with recent simller work and comments on the
application of the formula in practical calculations.

#*Research sponsored by the U, S. Atomic Energy
Commission under contract with the Union Carbide
Corporation, ‘
3. 8. Faulkner, Physics Letters 314, 227 (1970),

o
- Density of States of Disordered“Biqg;y Alloys.* .
A.ZIN and E.A.STERN, U. of Wash,--The density of states:
for a disordered binary alloy is calculated using the ..
Tight Binding Approximation for a one band model in a '
cubic lattice. A new coherent potential scheme has been
developed to calculate the change in the self energy
operator as & function of concentration. This change
arises from the change in the scattering t-matrix when
one replaces one type of atom at & single site with.

clusters where the probability of a given clusters® com-
position is a function of concentration. The. cluster :
size used in this calculation is an atom and its nearest
neighbors. The perturbing potentials introduced by re-
placing at a single site one type of atom with another
are calculated self-consistently, and are made to satisfy

.the perfect shielding requirement. It is found that the

result differs quantitatively from the single site CPA
calculation. The correlation between surrounding atoms
gives a significant correction but the major quantitative
correction comes from the inclusion of the correctly
shielded potentials.

*Supported in part by Air Force Office for Sciemtific
Research

BK 9 Electronic Structure of Disordered
Solids and Almost Periodic Functions. P. M.
GRANT,IBM Research Laboratory, San Jose,
Calif.--A review has been made of the theory
of almost periodic functions, a relatively
little-used branch of mathematical analysis,
the ©purpose of uncovering relevant
application to the physical question of the
electronic structure of disordered solids.
The eigenproblem involving an almost periodic
potentlal is treated both abstractly and with
numerical experiment on a simple
one-dimensional model. Results indicate that

the almost periodic potential representation
leads to qualitative agreement with existing
theoretical and experimental findings &
regarding penetration of states into the
forbidden gap and predominance of indirect
optical transitions. Almost periodic

functions may well provide a unifying concept
encompassing a variety of approaches to the
study of disordered systems.

BK 10

Gaussian Vibrational Lineshapes in Semiconducting
Chalcogenide Glasses. P.C. TAYLOR, S.G. BISHOP, D.L.
MITCHELL, Naval Research Lab, Washington, D.C. and D.
TREACY, U.S. Naval Academy, Annapolis, Md.--The sharp
vibrational modes observed in chalcogenide glasses based
on layer and chain structure compounds are shown to
possess Gaussian lineshapes as proposed by Taylor, Blshop
and M:Ltchell1 and not broad Lorentzians es has also been
suggested . Transmission measurements on thin samples (30
to LOOi) of glassy AssS3 and AspSey which were hot press-
ed or polished from the bulk are consistent with eerlier

333




INTRODUCTION

This talk has as 1ts purpose the brlnglng to your attentlon of

‘rather obscure branch of mathematlcal analys1s Wthh may prov1defgf

_ounlfylng 'concept to our way ofh:thlnklng about dlsordered[sollds”

and 1n partlcular ‘thelr ban ructures andq optlcal propertles.

\My 1nterest inthe

Wasilhvolved

~prope't1es oj
*stumble xacross a Dover publlcatlon on‘ almost perlodlc functlons:

and became ilntrlgued w1th the p0551b111ty that here was‘ somely*"’““

mathematlcs lOOklng for some phy51cs to explaln.

I am going to assume most of you have never ~heard of almost

periodic functions and so will spend a little time oh°}their

,brother to the more famous Niels,~around 192“, and can be thought -

of as sort of a 'half-way house' on the path from Fourier series

to the Fourier inteqgral. Although studied intensively in the

‘early 1930's by Wiener and Weyl, there seems to have been little

attempt to apply the formalism to practical problems, although
natural areas would seem to be modulation theory and imperfect

diffraction phenomena as well as disordered structures.

‘;elementary properties. They'were dlscovered by Harald - Bohr,73¥f5~~

10 - ety G946,




FIRST SLIDE

As 1nd1cated on the flrst sllde, almost perlodlc functlons can beﬁ““

formally deflned as the set af all summable trlgonometrlc'serles.

w-It is most lmportant that the set {Aw} be denumerable,‘

“exp11c1tlytf“ the - hdhreals, or, the5 contlnuum,

otherw1se we would bekm;r ly're—definl g the Foutler 1n‘egral

Note the three dlstlnct cases

where {LQ& ;s‘

Purely periodic,

| = Limit periodic, where the set {d} is a subset of the set
:“of ratibnals, | o B | B
= General almost ﬁeriodic case Wherekqnekbr‘mbre of the 4*?74?°
” are'ittational; i : E
w1 secohd and | equlvalent deflnltlon uses the netlon ofj/
:translatlon nuﬁber . That 1s, we demand that for some numberih ‘

&, there ex1st a set {32? of 1nf1n1te cardlnallty such that;h
the given 1nequallty is~ satlsfled over all values of X Let
me mention that for the sake of simplicity, we will speak only

of one-dimensional problems in this talk. Now, if f(x) |is

R

purely periodic, then the special set of translation numbers -
for £é=ze¢ of course define the period. It can be shown that

under all circumstances the ‘set §Te¢t must be relat1v1ty dense

- -

in the sense of an arithmentic progression. That 1s,fthere"

must be no arbitrarily large or small gaps between each of the gﬁ
T : B

™ . From this property we can prove that simple functions =
. ki -




like cosx + @SRk are almost periodic while . thOseleike:t

. ‘ _
S/, S x, owxcL Siv ’/x - are not.

- Note that forms of Parseval 's Theorem~ and the Mean Value -

Theorem ex1st for almost perlodlc functlons.k 7'

‘are almost perlodlc functlonsl;really relevant t

such s/stems

e Nearest nelghbors never ]_ ; arbltrarlly close together

ThlS. fundamental degree of openess 1n the resultlng potent1al;,~

is requlred by the deflnltlon of almost per10d1c1ty.
~—-Nearest nelghbors are never arbltrarlly far apart. Thns the
potentlal must repeat 1tself w1th1n intervals of hreasonable
length hence afflrmlng ,another condition on almostyhperiodic
functions. | | .
HoweVer, from a strictl&ng;mathematical hpoint of vlew the
appropriate question to ask is§ Is the speotrum\of the Fourier
transform of the disordered solid. potential (or, more properly,

the transform of its autocorrelation function) always discrete?

B
The answer is probably not. On the other hand, many, if not all,

calculational models of such disordered potentials Will have

discrete spectra and hence bé amenable to description by almost

periodic functions.

An illustration is given by the next slide,
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.. periodic funotion.

' SECOND SLIDE

kcornerstone ~of tlght blndlng, as the convolutlon of an atomlc‘

Epotentlal w1th a structure factor .deflned by/the second equatlon

*1nformatlon, about s

omb‘of evenly spaced teeth f we 81mulate local fluctuatlons

:atomlc 81te ﬁ ;d 1ngya 0051ne rm as' n'equatlon (3) we obt‘_
the‘ form ‘l ijequatlon ‘(4)7' SatleYlng that requlred by thei

‘deflnltlon of almost perlod1c1ty, namely, a trlgonometrlc sum.

We need not‘fhave restricted “ourselves “to such ‘a simple

perturbatlon -- any sum or product of trlgonometrlc terms plugged

into equat10n,(3) is reduc1ble to a form recognlzable as an almost

_Here the flrst equation defines the rigid ioh ”approximatioh;d‘w”n

f
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' THIRD SLIDE

Let us now take up the eigenproblem of an almost perlodlc

Hamiltonian. As 1n the case of pure perlod1c1ty,‘we can learn a

‘n'lot by studylng the almost perlOdlC potentlal as a perturbatlon on

fequatlon and the almost perlodlc potentlal by the second

;thlrd equation glves the result ,of applylng non-degenerateﬂ

perturbation theory and using‘ the Mean Value Theorem ,for‘lyl'

almost periodic functions referred to earlier, We easily see .

that splittings of approximately tWice‘thelterm coefficients

in the potential will occur at wave vectors equal to half of

the potential exponent values.

o Although our result, on the surface, might appear trivial and
merely identical to the purely periodic treatment found in the

texts, we must remember that here the capital K's do not form

a sum group Or reciprocal lattice. Nonetheless, as 1long as

the potential can be thought of as almost .periodic, the
eignespectrum can still = be represented as a continuous
function of plane wave quantum numbers in a sort of extended
zone scheme with finite gaps at half of each capital‘K. With

respect to arguments about the validity of E vs., k concepts in




disordered structures, this is a quite profound

C

conclusion,

i

-
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 FOURTH SLIDE

'Romerio, in a paper 'published in J. Math Phys.; dlscusses 1n‘x

| depth thegx representatlon : theory for an almost ﬂ{perlodlcaa

‘tVHamlltonlan, and I won't go 1nto much detall on that matter

;However}(I do want tohsay somethlnglon the poss1b1e ex1stence‘of

‘please.

~slide
m

"The firstieénation expresses a limit periodic potential ‘with a

finite number of terms in its"series expan51on.‘f7 Since thefav
exponents are all constant multlples of a set of ratlonal numbers,.
they can be ,wrltten in"terms of a quotlent of integers w1th
respect to a leaSt COmmon ‘denominatork‘ZJ as shown in equation N
(2). The, re01procal of the least common denominator deflnes ak
orec1proca1 lattlce whose spac1ngs will generally be very small.
Thls is reminiscent of the effect Born Von-Karman boundary
conditions have on the periodic case. Thus the eigenfunctions of
this special potential can still be written in Bloch function form
as shown in equation (3). Note that we haQe re-written the’
constant g in (1) as zx/a in (3).

Now, for nmore general almost periodic potentials, either limit
periodic with an infinite number of terms or with one or more

irrational exponents, the LCD 2 tends to infinity with the

10r ’-"Jah' g%l




Cdeflnltlon of the 1ntegral shown 1n equatlon (u)

;have analogs to the 51mple Bloch functlons of the purely perlodlc

result that ‘equation (3) becomes in the‘ llmlt the

';‘elgenfunctlons of almost perlodlc Hamlltonlans w1ll generally not

_w1th in performlng the type of model calculatlons we w1ll now talk;

wxabout The potentlal model we have chosen to make exp11c1t‘:thea

major features of the almost periodic”‘eigenp;oblem 1s one of a

'simple cosine - mdddlated‘cosine; lThe‘;esults are shown 1nwthet

next slide. |

107 W\ S8,




’751deband terms as shown.uk We can thlnk of 1t : representlng a

PIFTH SLIDE

The ‘equations give the potential expression. ‘Note 'that fit]is55

- readily expre551ble in limit 'periodic form with ~center ‘and

“;Qreffectlvely 51mulate the removal of long rangeAforder'eﬁd thennear,

preservatlon of short ranqe order.

- The rest of the slide 'givés the E vs;?k deéehdenoe resulting from ‘ ‘
the given potential. If the mooulation were;oot present, the only
gap would be, of course, at little k = b;S. However, with thet
“application of ‘the fluctﬁation‘ seVeral subsidiary bandlets‘and?u\ 

gaps appeér. The gaps at little kX = 0.4 and 0.6 were prediCted'by

our earlier nearly free electron treatment. In addition, smaller

gaps occur at intervals separated by the reciprocal of the LCD of

the potential arguments.

The larger the wavelength of the modulation, the shorter the

extent of the bandlets in k—spaoe, and the larger the modulation

amplitude, the flatter the bandlets become which essentially

implies onset of localized states.

105 Nﬂh‘ 996




_Also, the main gap‘at'littie k = 0. 5 is somewhat less than the 0. 2hrh ﬁ
energy units expected w1thout modulatlon. However, addlng in then
'w1dth of the 1mmed1atly adjacent sub- bands just ‘about makes up the’
:dlfference.sh. Thus, thlS partlcular’imodel ‘“nd I belleve,
almost perlodlc potentlal hypothes1s 1n general;rstrongly sugge ts

penetratlon of the nomlnal energy gap . by satelllte' bands'arlslng

from the destruction of long range order




' SIXTH SLIDE

: ,1n thlS kind of band structure.,Next sllde, please-wk

’fdlfferlng bya

.vectors here denoted by capltal G.f

~transitions can occur amongst these sub-states.

HFlnally, let's cons1der what sort of dlpole tran51tlons can occur

{ng the Bloch- 1kele1genfunctlons f r llmlt perlodlc potentla'

flnlte number ofkterms we obtain the 1ndlcated selectlon

1pole trans1tlons canlonly connect

a' memberf,of the set 1of LCD rec1procal‘lattic

The reSt' of;,the‘“slide depicts ‘the varlous types ofd,allowed
transitions. We have omltted for clarlty all bandlets
those adjacent to the nominal. Note how certain ‘'indirect'

We conclude that

‘ ‘the‘almost'periodic‘potential“hypothesis then contains the seeds

except

of the so-called non-k conserving = transitions invoked to explaln' N

the optical properties observed in disordered solids.
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CONCLUSION

In‘-summary, ‘'we can say that to the extent almost perlodlc‘

potentlals approximate real potentlals in dlsordered materlals,

‘observatlons

verlflcatlon of several 1mportant experlmental

been achleved QThe nextistep 1s toflnvestlgate whlch types of 51te

~d1§tr1butlon functlons lead to almost perlodlc functlons and whlc

B




Definition V@ Set of all summ?ble trigonometric ser es:
flx)= 2, A, e'-}\”x
n

where {)xn‘} are dénumerab!e.

| i :’-ff:;Type (1) Purely Per|0d|c X = cn n= O +1 +2
' ”""?uType (2) - Limit Perlodlc )\ = crn, .
Type (3) General C,ase. ~ One or more A, irrational.’

{ratlonals}

Definition [ : . Existence of an infinite set of “translation
numbers’, {7}, such that:

fx+7)-f(x)I<e; —eo<x<eo

where € > O.

PLG?JU\I i T}r
) IAn|2=||m — J[lf )12 dx
r] "‘)CA)

Mean Value Theorem:

ff(x) eM dx=A_8(A=1)

— OO

!r a. !A’!ﬂl‘- 9%{
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Let: H<>:eikxl '

And: V(x) = ZU(K}ein’
K
Then \
k2o
E(k)= —— + U(0) + 3 | iy
2m o RS
| 7Y 2 [ke—(k=K)?]

Degeneracies occur at k = K/2 which resuIt:i“i’ri"fi'rst-—(jrde'r'
splittings of magnitude 21U(K)! on application of degenerate
perturbation theory. O I A |




C

~ Limit Periodic — Finite Number of Terms

k[/k(X):‘;E‘; 2 )((ﬂ)el Ve e"kx,{n}c'l'_” (3)

n=-oo

|

lLimit Pericdic — [nfinite Number of Terms

“Almost Periodic
&) 2T'n>(
L2 S ikx
lim —— 2, x{nje 74 e
V- oo n=-oo

=>fx(l<’-—~k) e X gk’ | (4)
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. U1 ‘
=L§O+U1‘ co¢ Kx+U2 [cos (K+AK)x
— +cos (K—AK) x|
B UO:{_E ‘
U, ={.1
L U,=0.04
K=1 '
i \ b —_—
AK=0.2 . ‘ ,
._./— .
— ___/’— a
§ i i ; | ; ! i ] g 1

Vixj=Ug+ U, L1 + == cos (AK)x | cos Kx




(K p
| G
=k—k'=G=G’

A
7

Direct Transitions, - Indirect Transitions,
AG=0 - Typel, AG#0

k’,

Indirect Transitions, Type H, AG+#0

)= x"(G) X(GHG +K) 8(G+k—G'—k')
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