

MgB₂ - One Year Later

Wire Development Already Well Underway!

Paul M. Grant Science Fellow Electric Power Research Institute Palo Alto, California USA

- Tomsic (HyperTech)
- Sargent (Diboride)
- Grasso (INFM-Genova)
- Caplin (Imperial College)
- Larbalestier (UW/ASC)
- Christen (ORNL)
- Suenaga (BNL)
- Canfield (Ames)

Nature, 1 March 2001

How was it ever missed!

Superconductivity at 39 K in magnesium diboride

Jun Nagamatsu*, Norimasa Nakagawa*, Takahiro Muranaka*, Yuji Zenitani* & Jun Akimitsu*†

* Department of Physics, Aoyama-Gakuin University, Chitosedai, Setagaya-ku, Tokyo 157-8572, Japan

CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan

Figure 3 Magnetic susceptibility χ of MgB₂ as a function of temperature. Data are shown for measurements under conditions of zero field cooling (ZFC) and field cooling (FC) at 10 Oe.

Figure 4 Temperature dependence of the resistivity of MgB2 under zero magnetic field.

<u>Maybe It Wasn't</u> <u>Missed!</u>

Ebbi

Wither Beyond MgB₂?

- MgB₂ appears to be the quintessential electron-phonon coupling superconductor
- A "tepid temperature" compound
- So far, one of a kind...end of the road?

Nature, 31 May 2001

Rehearsals for prime time

Paul Grant

Superconductivity seems to have been forever waiting in the wings. Although superconducting power cables are about to go live, will the newest material, magnesium diboride, become the class act of the future?

High critical currents in iron-clad superconducting MgB₂ wires

S. Jin, H. Mavoori, C. Bower & R. B. van Dover

Agere Systems/Lucent Technologies, Murray Hill, New Jersey 07974, USA

	4.2 K	25 K
J _c @ 1 T (A/cm²)	150,000	35,000

P. M. Grant MgB_2 - One Year Later

<u>Power</u> Device Req'mts

	Т (К)	Н (Т)	$J_c (A/cm^2)$
Motors/ Generators	30	4	100,000
Transformers	30	2	80,000
Current Limiters	30	2	80,000
Cables	77	0.5	70,000

Dick Blaugher, NREL

<u>ORNL: J_C vs H</u>

ORNL: H vs T

P. M. Grant MgB_2 - One Year Later

<u>MgB₂: J_c at 20K</u>

P. M. Grant MgB₂ - One Year Later

ICSTM Centre for High Temperature Superconductivity

<u>Imperial College</u> <u>MgB₂ progress</u>

- Additive A (by scaleable route) enhances
 J_c to levels comparable with microcrystalline samples, and that are useful for applications at 20K.
- Additive B (by scaleable route) improves field dependence of $J_c(B)$. NB, because of sample porosity, only a lower bound for magnitude of J_c .

U.S. Department of Energy

- Institutions
 - INFM-Genova
 - UniGe
 - Ames
 - IRL (NZ)
 - NIMS (Japan)
- Companies
 - HyperTech (USA)
 - Diboride Conductors (UK)
 - Pirelli (?)
 - AMSC (?)
 - IGC-SP (????)
 - Japan (?)

No HTS wire Companies presently Have "visible" MgB₂ Development programs Underway

INFM-Genova, G. Grasso, A. Malagoli, V. Braccini, S. Roncallo, and A.S. Siri, Italy

<u>HyperTech CTFF</u> <u>for MgB₂</u>

CONTINUOUS TUBE FORMING AND FILLING (CTFF)

Temperature, K	4K	4K	4K
Field, T	0-0.2	1	3
Jc -kA/mm ²	7.5*	3*	0.2
A/cm ²	750,000	300,000	20,000
Temperature, K	30K	30K	
Field, T	0-0.2	1	
Jc -kA/mm ²	0.32	0.1	
(over 300 amps) (over 100 amps)			
A/cm ²	32,000	10,000	

* by extrapolation due to flux jump and lack of stabilization

HyperTech MgB₂ Wire

60 meters, 1.2 mm Mono

MgBz GTFF Iron in Monel

Multi-filament

Merit Factor for Superconducting Wire: C/P = \$/kAmp × meters

<u>Wire</u>	<u>C/P</u>	<u>Cost Driver</u>
NbTi (4.2 K, 2 T)	0.90	Materials (Nb)
Nb ₃ Sn (4.2 K, 10 T)	10	Materials (Nb)
Bi-2223 (25 K, 1 T)	20	Materials (Ag)
Y-123 (25 K, 1 T)	4	Capital Plant

Assumptions/Givens:

- $J_c = 100,000 \text{ A/cm}^2$
- $I_c = 2000 \text{ A/wire} (\text{Area} = 2 \text{ mm}^2)$
- Non-Materials C/P = 0.11 \$/kA·m (NbTi)
- Alfa Aesar MgB₂ Price Quote (10 kg)
 - 750 \$/kg (0.75 \$/gm)

 MgB_2 Wire C/P

• <u>2.03 \$/kA•m @ 25 K, 1 T</u>

<u>Critical Wire Issues</u>

<u>20 - 30 K</u> <u>1 - 3 T</u>	J _c , H _{irr}	Length
BSCCO/OPIT	++++	+++
YBCO CC	++++ +	
MgB ₂	++++ ac Losses ?	++++

Transformers

- Rotating Machinery
- Cables (?)

<u>1967 SC Cable !</u>

538

PROCEEDINGS OF THE IEEE, VOL. 55, NO. 4, APRIL 1967

100 GW dc, 1000 km !

Fig. 1. Cross section of the 100-GW line.

P.M. Grant, The Industrial Physicist, Feb/March Issue, 2002 ftp://ftpuser:ftpuser1@ftp.epri.com/outgoing/pgrant/SuperCity