

<u>Magnesium diboride wire</u> <u>application to high power</u> <u>superconducting dc cables</u>

<u>P. M. Grant</u>, (Electric Power Research Institute) pgrant@epri.com

R1.039: 13.30 5 March 2003

MgB₂ wire application to high power superconducting dc cables

APS The American Abysical Society 3-7 March 2002 Austin, TX R1 - Poster Session III

<u>Abstract</u>

In 1967, R. L. Garwin and J. Matisoo considered the possibility of constructing a 100 GW, 1000 km, dc superconducting transmission line based on the then newly discovered type II material, Nb₃Sn, refrigerated by liquid helium at 4.2 K.¹

In this poster we will rescale their study for MgB2 cooled by liquid hydrogen to 20 K, which will be used as an additional energy delivery agent as well as a cryogen.

¹R. L. Garwin and J. Matisoo, Proc. IEEE **55**, 538 (1967).

 $\ensuremath{\mathsf{MgB}_2}$ wire application to high power superconducting dc cables

Garwin-Matisoo

Fig. 2. A 20-km module of the 1000-km, 100-GW line.

Superconducting Lines for the Transmission of Large Amounts of Electric Power over Great Distances, R. L. Garwin and J. Matisoo, Proceedings of the IEEE **55**, 538 (1967)

Ebgi

MgB₂ wire application to high power superconducting dc cables

Garwin-Matisoo

- Nb₃Sn Wire
- $T_c = 9 K$
- LHe liquid-vapor cooled
- LN₂ heat shield

 MgB_2 wire application to high power superconducting dc cables

P.M. Grant, S. Schoenung, W. Hassenzahl, EPRI Report 8065-12, 1997

Ebbi

 MgB_2 wire application to high power superconducting dc cables

P.M. Grant, The Industrial Physicist, Feb/March Issue, 2002

http://www.aip.org/tip/INPHFA/vol-8/iss-1/p22.pdf

MgB₂ wire application to high power superconducting dc cables

Continental SuperGrid

"Continential SuperGrid Workshop," UIUC/Rockefeller U., Palo Alto, Nov. 2002

http://www.epri.com/journal/details.asp?doctype=features&id=511

MgB₂ wire application to high power superconducting dc cables

R1.039: 13:30 5 March 2003

R1.039: 13:30 5 March 2003

HyperTech MgB₂ Wire

60 meters, 1.2 mm Mono

MgBz GTFF Iron in Monel

Multi-filament

 $J_e = 25,000 \text{ A/cm}^2$ @ 20 K

MgB₂ wire application to high power superconducting dc cables

 MgB_2 wire application to high power superconducting dc cables

Electric & H₂ Power

Electricity

Power (MW)	Voltage (V)	Current (A)	Critical Current Density (A/cm ²)	Annular Wall Thickness (cm)
1000	+/- 5000	100,000	25,000	0.125

Hydrogen (LH₂, 20 K)

Power (MW)	Inner Pipe Diameter, D _{H2} (cm)	H ₂ Flow Rate (m/sec)	"Equivalent" Current Density (A/cm²)
500	10	3.81	318

MgB₂ wire application to high power superconducting dc cables

Superinsulation: $W_R^f = W_R/(n-1)$, where n = number of layers

Target: $W_R^f = 0.5 W/m$ requires ~10 layers

Other addenda (convection, conduction): $W_A = 0.5 W/m$

 $W_{T} = W_{R}^{f} + W_{A} = 1.0 \text{ W/m}$

MgB₂ wire application to high power superconducting dc cables

EPCI

Heat Removal

 $dT/dx = W_T/(\rho v C_P A)_{H2}$, where dT/dx = Temp rise along cable, K/m W_T = Thermal in-leak per unit Length $\rho = H_2$ Density $v = H_2$ Flow Rate $C_P = H_2$ Heat Capacity $A = Cross-sectional area of H_2$ cryotube

Take $W_T = 1.0$ W/m, then dT/dx = 1.89×10^{-5} K/m, Or, <u>0.2 K over a 10 km distance</u>

MgB₂ wire application to high power superconducting dc cables

<u>Remaining Issues</u>

- Current stabilization via voltage control
- Magnetic forces
- Hydrogen gas cooling and transport
- Pumping losses
- Hydrogen storage
- Costs