

SuperGrid Update

EPRI Superconductivity Working Group 3 April 2003 Milwaukee, WI

Paul M. Grant

Science Fellow SS&T

<u>pgrant@epri.com</u> Electric Power Research Institute Palo Alto, California USA

1967 SC Cable !

538

PROCEEDINGS OF THE IEEE, VOL. 55, NO. 4, APRIL 1967

Garwin-Matisoo

Fig. 2. A 20-km module of the 1000-km, 100-GW line.

Superconducting Lines for the Transmission of Large Amounts of Electric Power over Great Distances, R. L. Garwin and J. Matisoo, Proceedings of the IEEE **55**, 538 (1967)

Garwin-Matisoo

Fig. 1. Cross section of the 100-GW line.

- Nb₃Sn Wire
- $T_c = 9 K$
- LHe liquid-vapor cooled
- LN₂ heat shield

Electricity Pipe

P.M. Grant, S. Schoenung, W. Hassenzahl, EPRI Report 8065-12, 1997

P.M. Grant, The Industrial Physicist, Feb/March Issue, 2002

http://www.aip.org/tip/INPHFA/vol-8/iss-1/p22.pdf

SuperGrid

Continental SuperGrid

"Continential SuperGrid Workshop," UIUC/Rockefeller U., Palo Alto, Nov. 2002

http://www.epri.com/journal/details.asp?doctype=features&id=511

Chicago!

2 April 2003: abcNEWS.com

Powering Up

Researchers: National Power Grid Could Meet Increasing Energy Demands

By Lee Dye Special to ABCNEWS.com

April 2

Electric power transmission lines span the downtown Los Angeles skyline. Some say a plan to create an underground power

— If the United States had been able to do decades ago what a few experts are proposing that we start doing now, nobody would care much about the oil in the Middle East or beneath the Arctic plains.

They are proposing something they call a SuperGrid."

ieed it.

my would be based on hydrogen and electricity, delivered in us quantities to our urban centers through a vast underground network of and pipes. Of course, that wasn't possible even a few years ago, but t breakthroughs in science and technology have convinced a number of key ers that there is no reason why it couldn't be done in the years ahead.

They are proposing something they call a "SuperGrid," which would carry hydrogen and electricity from distant points to major population centers and shift this country away from its dependence on petroleum.

SuperCables

SuperCable

HyperTech MgB₂ Wire

60 meters, 1.2 mm Mono

MgBz GTFF Iron in Monel

Multi-filament

 $J_e = 25,000 \text{ A/cm}^2$ @ 20 K

Power Flows

P_{H2} = 2(QpvA)_{H2}, where P_{H2} = Chemical power flow

 $Q = Gibbs H_2$ oxidation energy (2.46 eV per mol H_2)

 $\rho = H_2$ Density

 $v = H_2$ Flow Rate

A = Cross-sectional area of H₂ cryotube

Ivdrogen

Electric & H₂ Power

Hydrogen (LH₂, 20 K)

Power (MW)	Inner Pipe Diameter, D _{H2} (cm)	H ₂ Flow Rate (m/sec)	"Equivalent" Current Density (A/cm²)
500	10	3.81	318

Electricity

Power (MW)	Voltage (V)	Current (A)	Critical Current Density (A/cm²)	Annular Wall Thickness (cm)
1000	+/- 5000	100,000	25,000	0.125

Thermal Losses

 $W_R = 0.5\varepsilon\sigma (T_{amb}^4 - T_{SC}^4)$, where

<u>Radiation</u> <u>Losses</u>

Heat Removal

 $dT/dx = W_T/(\rho v C_P A)_{H2}$, where

dT/dx = Temp rise along cable, K/m $W_T = Thermal in-leak per unit Length$ $\rho = H_2$ Density $v = H_2$ Flow Rate $C_P = H_2$ Heat Capacity $A = Cross-sectional area of H_2 cryotube$

Take $W_T = 1.0$ W/m, then dT/dx = 1.89×10^{-5} K/m, Or, <u>0.2 K over a 10 km distance</u>

Remaining Issues

- Current stabilization via voltage control
- Magnetic forces
- Hydrogen gas cooling and transport
- Pumping losses
- Hydrogen storage
- Costs !!

Hindenburg Hysteria

Tunnels

Tunnels for the SuperGrid

What's Needed:

- Joint efforts with research groups, engineering firms, contractors, and machine manufactures to develop and demonstrate appropriate excavation and tunneling systems
- Link directional drilling, micro-tunneling and larger tunnel boring machine technologies
- Support demonstration projects using advanced technologies for driving tunnels (e.g., VLHC @ Fermilab)

Rock Group

Transformer Form Factors

Waukasha Transformer Sizes

	Weight	Width	Length	
300 MVA				
lbs, in	500,000	80	200	
tons, ft	250	6.67	16.67	
30 MVA Con	ventional			
lbs, in	96,000	108	108	
tons, ft	48	9.00	9.00	
30 MVA Superconducting				
lbs, in	32,000	36	72	
tons, ft	16	3	6	

"Heavy Movers"

CalTrans/CHP

"18" Wheelers:	20,000	lbs/axle
=	80,000	lbs gross
=	40	tons

"Heavy Lifters"

Helicopters

Boeing Chinook CH-47F

Max Gross Weight:	50,000	lbs =	25	tons
Empty:	23,401	lbs =	11.70	tons
"Freight"	26,599	lbs =	13.30	tons

Planes

Lockheed C-5A Galaxy

 4000 Mile Range:
 250,000
 lbs =
 125
 tons

 8000 Mile Range:
 125,000
 lbs =
 63
 tons

 SuperGrid Update: PMG PDASWG Talk (Milwaukee, 3 April 2003) .25

A Moveable Substation

Supergrid Opportunities

- Long-term project
- Large capital costs for installation
- Special requirements for installing the grid: tunnel size, lengths of runs, ranges of ground conditions to be encountered.
- Trend with time: less space and more difficult access for installing utlities. Less public tolerance for disturbance
- Increasing use of tunneling and trenchless technologies rather than trenching and open excavation.
- Focus for improving tunneling technology for supergrid:
 - Contracting practices: mitigation and assignment of risk
 - Joint efforts with research groups, engineering firms, contractors, and machine manufactures to develop and demonstrate excavation and tunneling systems that will fit the requirements of the project
 - Link directional drilling, micro-tunneling and larger tunnel boring machine technologies.
 - Support demonstration projects using advanced technologies for driving tunnels.

