Cryo-Delivery Systems for the Co-Transmission of Chemical and Electrical Power

Paul M. Grant

Visiting Scholar in Applied Physics, Stanford University EPRI Science Fellow (*retired*) IBM Research Staff Member Emeritus Principal, W2AGZ Technologies <u>w2agz@pacbell.net</u> www.w2agz.com

CEC – ICMC 2005 29 August – 2 September 2005, Keystone, CO Paper C1-101, Cryofuels Session30 August 2005, 10:30 AM

The 21st Century Energy Challenge

Design a communal energy economy to meet the needs of a densely populated industrialized world that reaches all corners of Planet Earth.

Accomplish this within the highest levels of environmental, esthetic, safe, reliable, efficient and secure engineering practice possible.

...without requiring any new scientific discoveries or breakthroughs!

Its Solution

A Symbiosis of

Nuclear/Hydrogen/Superconductivity

Technologies supplying Carbon-free, Non-Intrusive Energy for all Inhabitants of Planet Earth

SuperCities & SuperGrids

SuperCables !

Past & Future Energy Supply

Fig. 1 Production Volume of Energy Resources

US Energy Consumption (2001)

Energy Source	Percentage of total
Petroleum	42%
Coal	24%
Natural Gas	20%
Nuclear	8%
Hydro power	2%
Solar, Wind, etc.	2%

US Oil Imports (2003)

Past & Future Energy Supply

The Hydrogen Economy

- You have to make it, just like electricity
- Electricity can make H_2 , and H_2 can make electricity ($2H_2O \Leftrightarrow 2H_2 + O_2$)
- You have to make a lot of it
- You can make it cold, 419 F (21 K)

P.M. Grant, "Hydrogen lifts off...with a heavy load," Nature 424, 129 (2003)

Diablo Canyon

Co-Production of Hydrogen and Electricity

Source: INEL & General Atomics

SuperCity

P.M. Grant, The Industrial Physicist, Feb/March Issue, 2002

"Hydricity" SuperCables

SuperCable Monopole

Power Flows

P _{sc} = 2 V IA _{sc} , where	Electricity
P _{sc} = Electric power flow V = Voltage to neutral (ground) I = Supercurrent A _{sc} = Cross-sectional area of superco	onducting annulus
P _{H2} = 2(QpvA) _{H2} , where	Hydrogen
P_{H2} = Chemical power flow Q = Gibbs H ₂ oxidation energy (2.46 ρ = H ₂ Density v = H ₂ Flow Rate	eV per mol H ₂)

Hydricity Scaling Factor

Dimensionless, geometry-independent scaling factor defines relative amounts of electricity/hydrogen power flow in the SuperCable:

$$R_{e/h} \equiv (J/Q\rho)(|V|/\nu)$$

"Energy Density" "Pressure"

Electric & H₂ Power

Electricity

Power (MW)	Voltage (V)	Current (A)	Critical Current Density (A/cm ²)	Annular Wall Thickness (cm)
1000	+/- 5000	100,000	25,000	0.125

Hydrogen (LH₂, 20 K)

Power (MW)	Inner Pipe Diameter, D _{H2} (cm)	H ₂ Flow Rate (m/sec)	"Equivalent" Current Density (A/cm²)
500	10	3.81	318

Thermal Losses

$$W_R = 0.5 \varepsilon \sigma (T_{amb}^4 - T_{SC}^4)$$
, where
 $W_R = Power radiated in as watts/unit area
 $\sigma = 5.67 \times 10^{-12} W/cm^2 K^4$
 $T_{amb} = 300 K$
 $T_{SC} = 20 K$
 $\varepsilon = 0.05 per inner and outer tube surface$
 $D_{SC} = 10 cm$
 $W_R = 3.6 W/m$$

Radiation Losses

Superinsulation: $W_R^f = W_R/(n-1)$, where

n = number of layers

Target: $W_R^f = 0.5 \text{ W/m}$ requires ~10 layers Other addenda (convection, conduction): $W_A = 0.5 \text{ W/m}$ $W_T = W_R^f + W_A = 1.0 \text{ W/m}$

Heat Removal

 $dT/dx = W_T/(\rho v C_P A)_{H2}$, where dT/dx = Temp rise along cable, K/m W_T = Thermal in-leak per unit Length $\rho = H_2$ Density $v = H_2$ Flow Rate $C_P = H_2$ Heat Capacity A = Cross-sectional area of H_2 cryotube

Take $W_T = 1.0$ W/m, then dT/dx = 1.89×10^{-5} K/m, Or, <u>0.2 K over a 10 km distance</u>

SuperCable H₂ Storage

<u>Some Storage</u> <u>Factoids</u>	Power (GW)	Storage (hrs)	Energy (GWh)
TVA Raccoon Mountain	1.6	20	32
Alabama CAES	1	20	20
Scaled ETM SMES	1	8	8

One Raccoon Mountain = 13,800 cubic meters of LH2

LH₂ in 10 cm diameter, 250 mile bipolar SuperCable = Raccoon Mountain

Crude Phase Diagram of H₂

Isothermal Properties of H₂

 $\rm H_2$ Gas at 77 K and 1850 psia has 50% of the energy content of liquid $\rm H_2$ and 100% at 6800 psia

Supercritical H₂ SuperCable

Fluid Properties Comparison of Liquid to Gaseous Hydrogen Transporting 500 MW $_{\rm t}$ in a 10-cm Diameter Pipe

T °K	P psia	ρ kg/m ³	μ μ Ρa×s	μ²/ρ ndyne	V m/s	Re 10 ⁶
20	14.7	70.8	13.6	261	4	2.08
77	1850	35.4	5.6	87	8	5.06

$$\operatorname{Re} = \rho VD / \mu \approx \frac{\operatorname{Inertial Forces}}{-}$$

Viscous Forces

Thus, it takes only 0.5 dynes "push" on an object with the above Reynolds Numbers on the gas to overcome viscous forces exerted by the given fluid

Fluid Friction Losses

$$p_{loss} = \lambda \ (l / d_h) \ (\rho \ v^2 / 2)$$

where

 λ = friction coefficient

/ = length of duct or pipe (m)

 d_{h} = hydraulic diameter (m)

$$W_{\rm loss} = M P_{\rm loss} / \rho$$
,

Where M = mass flow per unit length $P_{loss} = \text{pressure loss per unit length}$ $\rho = \text{fluid density}$

$$1 / \lambda^{1/2} = -2,0 \log_{10} \left[(2,51 / (\text{Re} \ \lambda^{1/2})) + (\varepsilon / d_h) / 3,72 \right]$$

ε = 0.015 mm		
(stainless steel)		
W _{loss} (W/m)		
22 K	0.72	
77 K	1.30	

Singlet (Para) - Triplet (Ortho) H₂

% para- H_2 in Normal H_2

An Unanswered Question (?)

- Is the para-ortho ratio dependent on magnetic field?
 - The peripheral field from a 100 kA superconductor cable can reach 1 T or greater.
 - Will this magnitude field induce a para-to-ortho spin flip? (maybe to 100% ortho?)
- At 77 K, H₂ is 50/50 para/ortho, and the ortho-para transition is exothermic with an enthalpy release of 523 kJ/kg.
- Would a loss of electric current with concurrent magnetic field collapse result in an ortho-para transition and subsequent heating?

A Canadian's View of the World

The Mackenzie Valley Pipeline

MVP Specs

Pipeline Length	1220 km (760 mi)
Diameter	30 in (76 cm)
Gas Pressure	177 atm (2600 psia)
Pressurization Stations	~250 km apart
Flow Velocity	5.3 m/s (12 mph)
Mass Flow	345 kg/s
Volume Flow	1.6 Bcf/d (525 m³/s)
Power Flow	18 GW (HHV Thermal)
Construction Schedule	2006 - 2010
Employment	25,000
Partners	Esso, APG, C-P, Shell, Exxon
Cost	\$18 B (all private)

2004 Natural Gas End Use

Design for eventual conversion to high pressure cold or liquid H₂

LNG SuperCable

MVP Wellhead Electricity

Electricity Conversion Assumptions

Wellhead Power Capacity	18 GW (HHV)
Fraction Making Electricity	33%
Thermal Power Consumed	6 GW (HHV)
Left to Transmit as LNG	12 GW (HHV)
CCGT Efficiency	60%
Electricity Output	3.6 GW (+/- 18 kV, 100 kA)

SuperCable Parameters for LNG Transport

CH_4 Mass Flow (12 GW (HHV))	230 kg/s @ 5.3 m/s
LNG Density (100 K)	440 kg/m ³
LNG Volume Flow	0.53 m³/s @ 5.3 m/s
Effective Pipe Cross-section	0.1 m ²
Effective Pipe Diameter	0.35 m (14 in)

It's 2030

- The Gas runs out!
- Build HTCGR Nukes on the well sites in the Mackenzie Delta (some of the generator infrastructure already in place)
- Use existing LNG SuperCable infrastructure to transport protons and electrons
- Electricity/H₂ split needs to be determined...Now!

LNG Danger To Our Communities Tim Riley Law .com 805-984-2350

Consumer Protection Attorney Tim Riley Warns About Liquefied Natural Gas

Certified Member of the Million Dollar Advocates Forum

"The Top Trial Lawyers in the Country"

Something Very Dangerous

PIPELINES A CONSTANT HAZARD! "Underfoot"

Take-Home Reading Assignment

www.w2agz.com/cec-icmc05.htm

- 1. Garwin and Matisoo, 1967 (100 GW on Nb_3Sn)
- 2. Bartlit, Edeskuty and Hammel, 1972 (LH₂, LNG and 1 GW on LTSC)
- 3. Haney and Hammond, 1977 (Slush LH_2 and Nb_3Ge)
- 4. Schoenung, Hassenzahl and Grant, 1997 (5 GW on HTSC @ LN_2 , 1000 km)
- 5. Grant, 2003 ("Hydrogen Lifts Off...," Nature)
- 6. Grant, 2005 (The SuperCable)
- 7. SuperGrid Workshop, 2004 (See Bibliography)