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London's idea that superconductivity might occur in organic macromolecules is examined in the light of the BCS theory of 
superconductivity. It is shown that the criterion for the occurrance of such a state can be met in certain organic polymers. A particular 
example is considered in detail. From a realistic estimation of the matrix elements and density of states in this polymer it is concluded 
that superconductivity should occur even at temperatures well above room temperature. The physical reason for this remarkable high 
transition temperature is discussed. It is shown further that the superconducting state of these polymers should be distinguished by 
certain unique chemical properties which could have considerable biological significance.
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Some problems and questions raised regarding 
Little’s 1964 work:

Fluctuations
Competition with CDW and Peierls phases 
Strength of coupling g
Retardation
Structure and microstructure



What can we say about the questions that Little’s 
work , the heavy fermions , the cuprates and MgB2 
have raised about achieving room temperature 
superconductivity? 



The  negative U Hubbard model 

The Holstein Model on a 2D lattice

The positive U Hubbard model on a 2D lattice

The 2-leg Hubbard ladder

Results for some simple model systems?

Conclusions



Competition  and strength of interaction



The Hubbard Model

H = −t
∑

<i,j>σ

(c†iσcjσ + c†jσciσ) + U
∑

i

ni↑ni↓

↑↓ ↑U
t

It depends upon only two parameters
U/t and the site filling <n>=1-x



Ps(T ) =
∫ β

0
dτ < ∆(τ)∆†(0) >
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1√
N

Σic
†
i↑c

†
i↓

The pair-field susceptibility

with



Pairfield Susceptibility   <n>=0.87  U=-4t

T.Paiva PRB et al 2004



ρ†q =
∑

l,σ

eiq!lc†lσclσ

C(q) =
1
N

< ρqρ
†
q >

The charge structure factor

with

S



S(π,π)
S(π,π)
S(π,π)

Moreo and Scalapino PRB 1991
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Conclusions for 2D negative U Hubbard

At half-filling SU(2) pairfield and CDW fluctuations
suppress Tc to zero. Doping breaks the symmetry 
and one has a finite temperature superconducting 
KT transition.



Doped away from half-filling the maximum
                     Tc~0.2t
for the 2-D case is obtained for lUl ~ 8t (the bandwidth).

Too large a value of lUl suppresses Tc.

For Tc=300K one needs 

t~5Tc=125meV

lUl~W=8t=1eV



Tc/t

<n>=1

/t

3D Negative U Hubbard Model

Scalettar et al 1989



H = −t
∑

<i,j>σ

(c†iσcjσ + h.c.) + ω0

∑

i

a†iai − µ
∑

i,σ

niσ + g
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iσ

niσ

−µ
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i,σ

niσ + g
∑

i,σ

niσ(a†i + ai)

The Holstein Model
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1
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The charge density structure factor
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The charge density structure factor

with

The pairfield susceptibility

with

s



λ =
2g2

Dω0
= 0.25

g = 1 ω0 = 1

Pair field susceptibility

8x8 lattice β = 12



λ =
2g2

Dω0
= 0.25

g = 1 ω0 = 1

Pair field susceptibility

8x8 lattice β = 12

R.M.Noack et al PRL 66 ,778



g = 1 ω0 = 1
β = 12
8x8 lattice

Competition with 
Peierls-CDW



ω0 = 4 g = 2 λ =
2g2

Dω0
= 0.25
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Conclusions for the 2D Holstein Model

The Peierls-CDW phase  competes with superconductivity and one 
needs to dope away from half-filling before one finds a 
superconducting phase.

Too strong a pairing interaction suppresses Tc.

It appears that for the 2D holstein model  having                          

λ =
2g2N(0)

ω0
~ ~1 

2g2

ω08t

ω0~t and

gives the maximum Tc . .



The 2D positive U Hubbard model



Single Particle Density of States 
U=8t    <n>=1.0

T~350K

Mott-Hubbard insulator

Maier et al PRB 2006



14

Figure 5: The equal-time magnetization-magnetization correlation function C(!x, !y) on a
10 × 10 lattice with U = 4t, 〈n〉 = 1 and T = 0.1t. The horizontal axis traces out the
triangular path on the lattice shown in the inset. Strong antiferromagnetic correlations are
seen (Hirsch [15], White et al. [16]).

The Antiferromagnetic Phase

Determinantal quantum Monte Carlo results for the equal-time magnetization-magnetization

correlation function

C(!) =
〈

mz
i+!m

z
i

〉

(26)

with mz
i = (ni↑ − ni↓) are plotted in Fig. 5. These results are for a half-filled Hubbard

model on a 10×10 lattice at a temperature T = 0.1t with U = 4t. At this temperature, the

antiferromagnetic correlation length exceeds the lattice size and the cluster is essentially in

its groundstate. Strong antiferromagnetic correlations are clearly visible in C(!).

The magnetic structure factor, shown in Fig. 6

S(q) =
1

N

∑

e−iq·!
〈

mz
i+! mi

〉

(27)

C(lx, ly) =< mz(lx, ly)mz(0, 0) >

mz = n↑ − n↓

Hirsch  PRB ‘85 Antiferromagnetic Ground State



The 2D positive U Hubbard model

At half-filling the ground state of the positive U
Hubbard model is an insulating anti-ferromagnet.



The 2D positive U Hubbard model

At half-filling the ground state of the positive U
Hubbard model is an insulating anti-ferromagnet.

The doped system exhibits d-wave pairing correlations
 and stripes. 
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Figure 8: The zero-temperature limit of S(π, π)/N versus 1/N1/2. The results extrapolate
to a finite value as N → ∞ implying that there is long range antiferromagnetic order in the
groundstate of the infinite lattice (Hirsch [15], White et al. [16]).

dx2
−y2 Pairing

The structure of the pairing correlations in the doped 2D Hubbard model were initially

studied using the determinantal Monte Carlo method. The d-wave pairfield susceptibility

Pd =

∫ β

0

dτ 〈∆d(τ) ∆†
d(0)〉 (29)

with

∆†
d =

1

2
√

N

∑

",δ

(−1)δc†"↑c
†
"+δ↓ (30)

was calculated. Here δ sums over the four near-neighbor sites of $ and (−1)δ gives the +−+−

sign alteration characteristic of d-wave pairing. The doped Hubbard model has a fermion

sign problem, so that the Hubbard-Stratonovich fields must be generated according to the

probability distribution P‖(S) given by Eq. (16). In this case, it is essential to include the

The D-wave pairfield susceptibility
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sign factor s in the evaluation of observables. The (red) circles in Fig. 9 show results [38]

for Pd(T ) obtained on a 4×4 lattice with 〈n〉 = 0.875 and U = 4t. If the sign s is not

included, one obtains the (blue) squares. The neglect of this sign in early work [42] left the

false impression that the Hubbard model did not support dx2−y2 pairing.

0 0.5 1

T

0

0.1

0.2

0.3

0.4

0.5

0.6

P
d

   with sign

without sign

Figure 9: The d-wave pairfield susceptibility
Pd(T ) (red circles) for a 4 × 4 lattice with
U = 4t and 〈n〉 = 0.875 versus temperature
T measured in units of the hopping t. The
(blue squares) show the erroneous result that
is found if the fermion sign is ignored. (Loh
et al. [38])

Figure 10: The d-wave pair-field suscepti-
bility Pd(T ) is shown as the open (red) cir-
cles. The open (green) squares show results
for the “noninteracting” pair-field suscepti-
bility P d(T ) calculated using dressed single-
particle Green’s functions, Eq. 31, while the
dashed (blue) curve is the noninteracting
susceptibility Pd◦ calculated with the bare
Green’s functions. (White et al. [16])

As seen, when the sign is included, the d-wave pairfield susceptibility increases as the

temperature is lowered. However, over the temperature range accessible to the determinantal

Monte Carlo, it remains smaller than the U = 0 result Pd◦, shown as the (blue) dashed line

in Fig. 10. In Ref. [16], it was argued that this behavior was due to the renormalization of

the single particle spectral weight and that the significant feature to note was that Pd(T )

Loh et al, PRB ‘90

Pd(T )
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Maier et al 2005
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The 2D positive U Hubbard model

At half-filling the ground state of the positive U
Hubbard model is an insulating anti-ferromagnet.

The doped system exhibits d-wave pairing correlations
 and stripes. 

The x=1/8 striped state competes with the d-wave 
correlations.



The pairing interaction is given by the 
irreducible particle-particle vertex Γpp

(a) ! = ! + ! !
pp pp

!

!
ph

!

!
ph

+

!
ph

irr
+

!
ph +

=
!
pp

!

(c)

(b) = !



.

The Bethe-Salpeter equation for the particle-
particle channel with a center of mass 
momentum Q=0 is the generalization of
the BCS equation 

−(T/N)
∑

p′

Γpp(p; p′)G(p′)G(−p′)φα(p′) = λαφα(p)

p = (p, iωn) T = Tcλd = 1when ,



2

cluster problem is achieved by coarse-graining the single-
particle Green’s function, i.e. averaging G(K + k̃) over
the k̃ within a cell which converges to a cluster Green’s
function Gc(K). Consequently, the compact Feynman
diagrams constructed from Gc(K) collapse onto those of
an effective cluster problem embedded in a host which
accounts for the fluctuations arising from the hopping of
electrons between the cluster and the rest of the system.
The compact cluster quantities are then used to calculate
the corresponding lattice quantities. The pairing inter-
action is given by the irreducible part of the particle-
particle vertex

Γpp(K;K ′) ≡ Γpp(K,−K;K ′,−K ′) (5)

with K = (K,ωn). One can also use the DCA to calcu-
late the spin susceptibility χ(Q,ωn). Then, in an analo-
gous manner to Eq. (4), we introduce a d-wave coupling
strength

1
2 〈g(K)Γpp

even(K,πT ;K′,πT )g(K′)〉KK′

〈g2(K)〉K
(6)

with the even frequency, even momentum part of the irre-
ducible particle-particle vertex, Γpp

even(K,πT ;K′,πT ) =
1/2 (Γpp(K,πT ;K′,πT ) + Γpp(K,πT,−K′,−πT )) and
g(K) = (cos Kx− cos Ky). By requiring that this d-wave
coupling strength is the same at a given temperature for
the approximate interaction, Eq. (1), we obtain Ū(T )
shown in Fig. 1 for the case in which U/t = 8 and the
site filling 〈n〉 = 0.85. Here one sees that Ū is smaller
than U and decreases at lower temperatures. We will
discuss the physics that underlies this effect after we
explore how well 3

2 Ū2χ(K −K ′) represents Γpp(K;K ′).

0.0

2.0

4.0

6.0

8.0

10.0

 0  0.5  1  1.5  2  2.5  3

Ū
(T

)/
t

T/t

U = 8t; Nc = 4; 〈n〉 = 0.85

FIG. 1: The coupling strength Ū for U = 8t and a site filling
〈n〉 = 0.85.

III. RESULTS FOR THE PARTICLE-PARTICLE
BETHE-SALPETER EQUATION

The leading low temperature eigenvalue of the particle-
particle Bethe-Salpeter equation

− T

Nc

∑

K′

Γpp (K,−K;K ′,−K ′) χ̄pp
0 (K ′) φα(K ′) =

λαφα(K) (7)

where we coarse-grained the Green’s function legs,
χ̄pp

0 (K ′) = Nc
N

∑
k̃′ G↑(K′ + k̃′) G↓(−K′ − k̃′), accord-

ing to the DCA assumption, corresponds to an eigen-
function with d-wave symmetry. The red curve (solid
squares) in Fig. 2 shows the d-wave eigenvalue versus T
obtained from Eq. (7) with the ”exact” DCA interac-
tion Γpp. The blue curve (open circles) shows the d-wave
eigenvalue obtained from Eq. (7) when Γpp is replaced
by 3

2 Ū2χ(K − K ′). Here we are using DCA results for
χ as well as the single-particle propagator that appears
in Eq. (7). One sees that with Ū(T ) determined as dis-
cussed in Sec. 2, the temperature dependence and the
size of the d-wave eigenvalue are well accounted for by
the simple form of the interaction given by Eq. (1).

0.0
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0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3

λ
d

T/t

U = 8t; Nc = 4; 〈n〉 = 0.85

approximate “RPA”

“exact” DCA

FIG. 2: The d-wave eigenvalue versus T/t obtained from the
RPA form, Eq. (1) (green circles) and from the ”exact” DCA
interaction (red squares).

The momentum dependence of the eigenfunction ob-
tained using the approximate form of the interaction has
the same dominant (cos Kx− cos Ky) behavior as the ex-
act DCA result. Furthermore, as shown in Fig. 3, the
Matsubara frequency dependence of the DCA and the
approximate interaction are remarkably similar.

IV. CONCLUSION

By fitting Ū(T ) so that the d-wave strength of the
approximate interaction is equal to that of the ”exact”

Th. Maier et al PRB 2007
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The d-wave eigenvalue versus T 
for different values of U
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The 2D positive U Hubbard model

At half-filling the ground state of the positive U
Hubbard model is an insulating anti-ferromagnet.

The doped system exhibits d-wave pairing correlations
 and stripes. 

The x=1/8 striped state competes with the d-wave 
correlations.

The optimum U is of order the bandwidth 8t.



For U~8t and <n>~0.85

Tc~0.05t

For Tc=300K one needs t~.50 or
8t~U~4 eV



Retardation



Structure and microstructure



Increasing the strength of the interaction

Structure and microstructure

Negative U



Double-valence-fluctuating molecules and superconductivity 

J. E. Hirsch

Department of Physics, University of California, San Diego, La Jolla, California 92093

D. J. Scalapino

Department of Physics, University of California, Santa Barbara, California 93106
Received 4 June 1985

We discuss the possibility of ‘‘double-valence-fluctuating’’ molecules, having two ground-state configurations differing by two electrons. 
We propose a possible realization of such a molecule, and experimental ways to look for it. We argue that a weakly coupled array of 
such molecules should give rise to a strong-coupling Shafroth-Blatt-Butler superconductor, with a high transition temperature.

Phys. Rev. B 32, 5639 - 5643 (1985)

http://prola.aps.org/search/field/author/Hirsch_J_E
http://prola.aps.org/search/field/author/Hirsch_J_E
http://prola.aps.org/search/field/author/Scalapino_D_J
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Double -valence -fluctuating molecule



t’ t’

Negative U=E(2)+E(0)-2E(1) 
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Phase separation 
for the 2-leg ladder



With a weakly coupled  2-leg ladder one can have larger 
values of J/t with out phase separation. This favors pairing
on the ladder.
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D is a measure of the strength of the pairing correlations.
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Figure 13: D̄ versus t⊥/t for various values of U/t at a filling 〈n〉 = 0.9375 (Noack et al. [54]).

have for the one-electron energy

Ek = −2t(cos kx + cos ky) − 4t′ cos kx cos ky − . . . (34)

From an analysis of a large number of hole-doped cuprates, it was found that Tc is correlated

with the range of the intra-layer hopping. [56] For the one-band Hubbard model that we have

discussed, this analysis implies that Tc should increase as t′/t becomes more negative. The

opposite trend is seen in both dynamic cluster [57] and density matrix renormalization-group

calculations. [13, 58] However, a projected fermion calculation [59] finds that t′ enters the

effective interaction and can lead to an increase in Tc which is consistent with the conclusions

of Ref. [56]. The resolution of this puzzle represents an important open problem.

R.M.Noack et al  PRB 56, 7162 (1997)
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The pairing response of the 2-leg ladder can be enhanced
by varying        and <n>.t /t

Fine tuning



So, there are some problems and questions that 
still remain and whose solutions may lead to 

higher temperature superconductivity.

Competition with CDW and Peierls phases,
and striped phases 
Strength of the coupling g
Retardation
Negative U centers
Structure and microstructure


