Room Temperature Superconductor WORKSHOP

Wednesday, 20 June, 2007

Struggle to find higher-T_c materials

Jun Akimitsu

Department of Physics and Mathematics, Aoyama Gakuin University

Akimitsu Lab. HP URL http://www.phys.aoyama.ac.jp/~w3-jun/

Room Temperature Superconductor WORKSHOP

Wednesday, 20 June, 2007

Desperate Struggle to find higher-7_c materials

Jun Akimitsu

Department of Physics and Mathematics, Aoyama Gakuin University

Akimitsu Lab. HP URL http://www.phys.aoyama.ac.jp/~w3-jun/ Many approaches to higher- T_c superconductors

1) Carrier-doped CuO₂ planes

- Unidentified Superconducting Objects -
- Extremely large energy gap observed by STM -

2) Cu-oxides having a different crystal structure

-Ladders-

-Lieb model- etc...

3) Metal superconductors including light elements (boron, carbon etc...)

4) Carrier-doped clusters / nanotubes

Intrinsic inhomogeneity in CuO₂ plane

Extremely large SC gap was observed by STM.

By J.C. Davis and S. Uchida

<u>Unidentified</u> <u>Superconducting</u> <u>Objects</u>

- In an early stage, after the discovery of high-T_c cuprate, a lot of <u>Unidentified</u>
 <u>Superconducting Object (USO)</u> has been found.
- Are all data USO ?

Many approaches to higher- T_c superconductors

1) Carrier-doped CuO₂ planes

- Unidentified Superconducting Objects –
- Extremely large energy gap observed by STM -

2) Cu-oxides having a different crystal structure -Ladders--Lieb model- etc...

3) Metal superconductors including light elements (boron, carbon etc...)

4) Carrier-doped clusters / nanotubes

CuO₂ 2D-plane is essential for high- T_c superconductivity or not ?

By M. Takano et al. (Kyoto)

Theoretical Prediction of Superconductivity in Ladder Compounds

- Superconductivity in ladders and coupled planes
 - □ T.M. Rice *et al*.,
 - Europhys. Lett. 23 (1993) 445.
 - □ E. Dagotto *et al*.,
 - Phys. Rev. B <u>45</u> (1992) 5744.
 - Superconductivity appears and spin gap still exists in an even number-leg ladder.

Matthias Law

Bennd Matthias

B.T. Matthias

> 1^{st} law: To find materials with large N(0)

> 2nd law: Do not believe theorist's prediction

> Akimitsu Law: Pretend to believe theorist's prediction

Picture: National Academy of Sciences

Ladder-system

Telephone number compound 14 - 24 - 41

Decrease of the resistivity by Ca-doping

M. Uehara et al., J. Phys. Soc. Jpn. 65 (1996) 2764

Superconductivity in 2-leg ladder compound

M. Uehara and Y. Nagata

M. Uehara et al., J. Phys. Soc. Jpn. 65 (1996) 2764

Electron doping to ladder compound

FLEX calc.
 Hole-type
 T_c~12K
 Electron-type
 T_c~600K(!)

- 0.06 0.05 0.04 $T_{\rm c}/t_{\rm l}$ 0.03 Hole 0.02 Electron 0.01 8.8 y = 7.410.2 0.00 1.2 0.9 1.0 1.1 1.3 n $T_{c}/t_{l} = 0.001$
- Trial for electron-doping
 Sr_{14-x}La_xCu₂₄O₄₁
 Sr_{14-x}Nd_xCu₂₄O₄₁

K. Kuroki et al., Phys. Rev. B 72, 212509 (2005)

Y. Sugiyama

Lattice constant b is decreased by La, Nd-doping.

Temperature dependence of resistivity

(Sr,La,Nd)₁₄Cu₂₄O₄₁ system shows a metal-insulator transition.

No sign of superconductivity.

The magnetic ground state of composition between x = 6 and 9 has an antiferromagnetic ordering state.

Temperature dependence of thermopower

La-doping

La-content dependence is very small

Nd-doping

□ S~0 under 75K in $(Sr_6Nd_8)Cu_{14}O_{41}$

CuO₂ plane, ladder, Lieb model

CuO₂ plane

2-leg ladder

Lieb model

1/4 periodic order

 $Cu_{0.75}M_{0.25}O_2\,plane$

Flat band dispersion in high- T_c cuprates (ARPES)

Z-X. Shen and D. S. Dessa, Phys. Rep. 253 (1995) 1.

Candidate for flat dispersion -Lieb model-

Superconductive signal in Ca-Cu-O-(CO₃) system

Са	Na	V.F.
5.5/15	10.5/15	0.5%
5.5/15	21/15	< 0.1%
7/15	9/15	0.4%
7/15	18/15	< 0.1%
4/15	12/15	_
4/15	24/15	< 0.1%
7.5/15	8.5/15	0.2%
7.5/15	17/15	0.3%
13/15	3/15	_
13/15	15/15	0.8%

unpublished, H. Ozaki, T. Suzuki, K. Horigane, Y. Zenitani and J. Akimitsu

Many approaches to higher- T_c superconductors

1) Carrier-doped CuO₂ planes

- Unidentified Superconducting Objects –
- Extremely large energy gap observed by STM -

2) Cu-oxides having a different crystal structure

- Ladders -
- Lieb model etc...

3) Metal superconductors including light elements (boron, carbon etc...)

4) Carrier-doped clusters / nanotubes

Are there any new metal high- T_c superconductors ?

Discovery of superconductivity in MgB₂

J. Nagamatsu, N. Nakagawa, T. Muranaka and Y. Zenitani

Characteristic 2D structure (honeycomb lattice)

J. Nagamatsu et al., Nature 410 (2001) 63

news and views

Genie in a bottle

Robert J. Cava

An overlooked compound has a surprise in store for physicists. It becomes superconducting at a much higher temperature than any other stable metallic compound.

-----he field of superconductivity has been rocked by a startling announcement. For fifteen years, researchers have been delving into the mysterious and complex. world of high-temperature superconducting materials N virtually ignoring simple metallic compounds because they superconduct at very low temperatures. But now Akimitsu and colleagues have discovered superconductivity at an amazing 39 degrees above absolute zero in the simple compound magnesium boride (MgB), They report their discovery on page 68 of this issue¹, in what must be one of the shortest communications published in Nature in recent memory.

Superconductors are materials that lose their resistance to electrical current flow below a certain critical temperature (T.). In the ideal case, this zero-resistance state is absolute N electrons flowing in a continuous loop of superconducting wire below T_a could theoretically flow for the age of the Universe and never lose any energy. But in the real world there are losses from microscopic inhomogeneities, for example, and the ideal is never truly obtained.

Nonetheless, devices made with superconducting materials have resistances that are orders of magnitude lower than those of devices made with the best conventional conductors. This low resistance to current flowmeans that large currents (on the order of 10^e amperes per square centimetre of wire cross-section) can be passed without significant heating. The magnets in magnetic resonance imaging instruments now in common use, for example, are made from metal-alloy superconducting wires. These magnets are cooled below the T_e of the metal alloy by immersion in liquid heli umat 4.2 K. One can sometimes see trucks delivering helium to hospital loading docks for that purpose

Almost exactly 15 years ago, physicists were stunned by the announcement that a ceramic composed of barium vttrium.copper and oxygen could become superconducting at temperatures above that of liquid nitrogen (77 K)². This discovery, based on a modification of a formula first announced by Bednorz and Mÿller² who later won the Nobel Prize for physics, sparked an explosion in condensed-matter physics and materials-science research, and the echo can still be heard. It is difficult to describe the feeling.

NATURE VOL 400 1 MARCH 2001 www.rabure.com

Figure 1Theneyl vol scovered superconductor magnesium bori dehas been available in large quantities from suppliers of inorganic chemical sform any years, but physicists have finally Bubbed the lampCand found that magnesium boride superconducts a tan amazing 39K (ref. 1).

that we had for the infinite possibilities promised by that discovery. Imagine aworld with per petualengines, trainsthat magnetically dioatOabove the tracks and ultrafast computers. For the people in the thick of it, it was almost impossible to sleep for years afterwards N every minute spent sleeping was another minute missed in trying to figure out the implications of a whole newway of thinking about the world. Some of the promises of those early days have been fulfilled, and the legacy of the discovery of high-temperature superconductivity has been to change forever the culture of multidisciplinary research in the physical sciences

A kimitsu apparently announced the discovery of superconductivity in MgB₂ (ref. 1) at a conference in Sendai, Japan, in early January. The story came to my attention a few weeks later through what must have been acconvoluted path of e-mails and wordof mouth. The whole process is hauntingly reminiscent of the way such stories came to light in the early days of high-temperature superconductivity N under the cuise of a narrative seemingly too fantastic to be true, and yet at the same time, too fantastic to be entirely fake.

The story I heard was that A kimits u and his group were attempting to make a chemical analogue of CaB, N a semiconducting material that surprisingly becomes ferro magnetic (like iron) when doped with a small amount of electrons⁴. They tried to

💭 🖓 2001 Macmillan Macazines Ltd.

replace calcium with magnesium, which is directlyabove it in the periodic table. One of their starting materials was the simple compound M dB, which has been known since 1953 and is available in kilogram-size bottles from suppliers of inorganic chemicals (Fig. 1) . M alls is one of the common reagents used in metathesis reactions (in which compounds exchange partners)⁵, and magnesium borides are used in some commercial preparations of elemental boron. Apparently, the stuff they got out of the bottle became superconducting at 39 K, 16 K higher than any other simple metallic compound. That must have been quite a shock.

temperatures for the high-temperaturecopper oxides have risen to 160 K over the years, four times the value for MgB2. Thereare two reasons for the fuss. First, early indications* are that this material ameans to become superconducting by what is known as the BCS mechanism (named after its discoverers, Bardeen, Cooper and Schrieffer)², in which the interactions between the electrons that give rise to superconductivity are mediated by thermal vibrations of the atoms in the underlying crystal lattice. So, unlike the high-temperature copper oxide superconductors, MgB, is likely to be a conventional O superconductor N the rules of physics do not need to be bent for superconductivity to occur. MoB₂ has the highest T_e known for a chemically stable, bulk compound of this kind. This holds tremendous promise for

23

"Genie in a bottle"

MgB_2 is a commercial product !!

But why the excitement? After all, critical

B ₂ -	BeB ₂	pe	Be	OT Benn rnd Th	ide 1 /	CS 7a.#L r Matt	hias					AlB
		ScB ₂	TiB ₂	VB ₂	CrB ₂	MnB ₂						
		YB ₂	ZrB ₂	NbB ₂	MoB ₂	TcB ₂	RuB ₂					
	BaB ₂		HfB ₂	TaB ₂	WB ₂	ReB ₂	OsB ₂					
LuB ₂		Crl Mr	$\mathbf{B}_2 T_{\mathrm{N}} = \\ \mathbf{n}\mathbf{B}_2 T_{\mathrm{C}} = $	86 K (J 143 K	.Castaing (L.Ander	g et all. J rsson et a	.Phys.Ch ull. Solid	em.Solia State Co	ls (1972) mmunico	Vol.33 5 ations Vo	33) 1.4 77 (19	966))
UB ₂	PuB ₂	Tal Nb	$B_2 T_c = B_2 T_c = T_c $	0.42 K 0.62 K 2.2-9.4 K	(L.Leyaro X (A. Yan	ovska <i>et</i> namoto <i>e</i>	all. J.Les t al H. '	<i>s-commo</i> Fakagiwa	on Metal v et al.)	s 67 (197	9) 249)	

Picture: National Academy of Sciences

Fermi surface and band structure of MgB₂

Hole-like surface

Green and **Blue** cylinder ($p_{x,y}$ bands)

Blue tubular network (p_z bands)

Electron-like surface

Red tubular network (p_z band)

The MEM charge density in MgB₂

T=15 K

1 B atoms form 2D network

2 Mg atoms are isolated

E. Nishibori et al., Bonding Nature in MgB₂, JPSJ **70** (2001) 2252

Summary of MgB₂

- The superconductivity can be basically explained by BCS theory
 - > conventional superconductor
- The strong electron-phonon interaction due to the lattice vibration (E_{2g} phonon) in a boron-plane
 - strongly connected with the band
- The 2-gap superconductor
 - > strong and weak coupling pairing in the σ , π band
 - The "text book material" for 2-gap superconductors

S. Souma et al., Nature 423 (2003) 65

Application of MgB₂

MRI (Magnetic Resonance Imaging)

LINEAR EXPRESS

Kumakura's Group

Superconducting Material Center

National Institute for Materials Science

Okada's Group

Hitachi Research Laboratory

Hitachi, Ltd.

Applied fields for superconductors versus J_c (engineering) ~10⁴ A/cm² lines

J. Shimoyama et al.

Trial for enhancement of J_c in MgB₂ add. Be(2%) @5K 10⁶ Nb-Ti wire Bi-2223(20K) Adding small amount In-situ tape 10⁵ (add. SiC) of Be 3.0x10⁴A/cm² $J_{c}(A/cm^{2})$ @5K, 4T 10⁴

In-situ tape

4.2K

2

add. Be(1%) @5K

4

10³

10²

n

(add.SiC @20K)

The highest level Jc in the world was achieved.

We are trying to achieve enhancement of J_c in high field region.

In-situ tape

12

(no add.)

10

Ex-situ tape

(no heated)

6

Field (Tesla)

8

10m class wire of MgB₂

Successfully processed MgB₂ coil at the first time in the world !!

Establishment of processing is near completion.

Hitachi Research Laboratory, Hitachi Ltd. National Institute for Materials Science

Trial product of small magnet using MgB_2

1st machine

Diameter: 43mm Field: 0.13T(4.2K,0T) 2nd machine

Diameter: 48mm Field: 0.5T(4.2K, 0T)

We succeeded in fabricating the SC magnet by MgB₂ at the first time in the world !!

Accomplishment to develop 1.5T magnet at 16th September, 2005.

Hitachi Research Laboratory, Hitachi Ltd. National Institute for Materials Science

Recent progress in MgB₂ film (I) - as-grown MgB₂ film -

(0001) sapphire substrate at 250°C

SEM image

Osaka Prefecture University T. Ishida et al.

Nano-fabrication of MgB_2

Development toward neutron-detector

Osaka Prefecture University T. Ishida et al.

Temperature [K]

A black MgB₂ thin film was successfully synthesized where electrolyte touches a graphite cathode.

SEM image of MgB₂ thin film fabricated by Galvanization method

National Institute for Materials Science Japan Atomic Energy Research Institute

H. Abe et al.

Summary on recent progress in thin film

As a result of homogenization of the electrolyte by mechanical stirring:

	Fe	Stainless steel	
$T_{\rm c} (0 {\rm T}) ({\rm K})$	37	37	
$J_{\rm c}$ (0 T, 5 K) (A/cm ²)	2.3 *10 ⁵	2.4*104	
$J_{\rm c}$ (0 T, 20 K) (A/cm ²)	1.4*10 ⁵ 7*10 ³		
$J_{\rm c}$ (1 T, 5 K) (A/cm ²)	1.4*10 ⁵	1.3*104	

The highest J_c has been achieved in MgB₂ / Fe.

Merits of Application in MgB₂

- 1 Highest- T_c in the intermetallic superconductors
- Starting materials are light and not expensive.
- 3 Its T_c is a sweet spot for refrigerator.
- 4 No-weak-link between grains.
- 5 Using cheap sheath-material is feasible.
- 6 Heat treatment is unnecessary. or treatment at low temperature and short time is feasible.
- ⑦ Good performance for bending.

Good cost performance

Superconductivity in Y_2C_3

-Collaborators-

S. Akutagawa

SPring

- MEM/Rietveld analysis
 - □ K. Osaka, K. Kato and M. Takata (SPring-8)
- Microwave measurement
 - T. Ohashi, H. Kitano, A. Maeda (Univ. of Tokyo)
- NMR
 - A. Harada, H. Mukuda, Y. Kitaoka (Osaka Univ.)

Susceptibility & Resistivity of Y₂C₃

We successfully synthesized high quality Y_2C_3 samples.

 $T_{\rm c}$ is controllable by synthesis condition.

Rietveld analysis of Y_2C_3 - high- T_c (18 K)

and C atoms form dimers.

Comparison between low- T_c and high- T_c material in Y_2C_3

High-*T*_c material our work : 8.18~8.23Å

Low-*T*_c material Krupka's work : 8.214~8.251Å

The lattice constant, a, of high- T_c material is shorter than that of low- T_c material.

Refined Structure Parameters

High-*T*_c material (our work) d_{с-с} : 1.3134 Å *d*_{Y-C} : 2.4876 Å *d*_{Y-Y} : 3.5451 Å Low- $T_{\rm c}$ material

(V.I. Novokshonov et al.)

d_{с-с} : 1.5298 Å d_{ү-с} : 2.556 Å *d*_{Y-Y} : 3.5652 Å

View from [111] direction

C-C distance of high- T_c material is shorter than that of low-T_c material.

Macroscopic parameters

*T*_c depends on γ. $2\Delta_0/k_BT_c$ increases with increasing *T*_c. Sommerfeld constant : $\gamma = \pi^2 k_B^2 D(E_F)/3$

Various parameters of Y_2C_3 Comparison with various T_c phases

<i>Т</i> _с (К)	11.6	13.9	15.2
© (mJ/mol∙K²)	4.7	6.0	6.3
$ heta_{D}$ (K)	540	530	530
$\mu_0 H_{c2}(0)$ (T)	22.7	24.7	26.8
$2\Delta/k_BT_c$	3.6	3.9	4.1

Relationship between γ and T_c

¹³C NMR Knight shift : singlet or triplet?

A. Harada et al., J. Phys. Soc. Jpn. 76(2) (2007) 023704/1-4.

¹³C NMR $1/T_1$: Two-gap superconductor ?

 $T_1 T \propto 1/N(E)$

1/*T*

We observed <u>two</u> components in 1/T dependence.

Two isotropic gaps exit in Y_2C_3 .

Large gap: $2\Delta_{\alpha}/K_{B}T_{c} = 5 \ (\alpha = 0.75)$

Small gap: $2\Delta_{\beta}/K_{B}T_{c} = 2 \ (\beta = 0.25)$

A. Harada et al., J. Phys. Soc. Jpn. 76(2) (2007) 023704/1-4.

Dotted line shows ~ T^2 (line node).

The inset shows a simple exponential recovery curve of nuclear magnetizatio

Aoyama-Gakuin University

Superconductivity in B-doped Diamond

- *T*_c ~ 4K , *H*_{c2} ~ 3.5T
 <u>Type-II SC</u>
- Synthesis at 8-9GPa, 2500-2800K
- B concentration
 4-5x10²¹ /cm³

E.A.Ekimov et al., Nature 428, 542(2004)

Difference of T_c between (100) & (111) films grown by CVD method

- At same B-concentration : about 8.5x10²¹cm⁻³
 - (111)
 - T_c onset = 11.5K
 - T_c zero = 7.4K
 - **(100)**
 - T_c onset = 6.3K
 - T_c zero = 3.2K

Superconductivity in B-doped Diamond -Collaborators-

T. Muranaka

Preparation of Diamond films

 K. Kobashi (Electronics & Infomation Technology Laboratory, Kobe Steel Ltd.)

Superconductivity in B-doped diamond

Polycrystalline film

(100) surface is appeared by B-doping.

SEM images of diamond thin film

Polycrystalline thin film

B-doping

B/C=2000 ppm

30 h

Highly oriented thin film (like pyramid surface)

B-doping B/C=2000 ppm 30 h

(100) surface is appeared by B-doping.

Resistance in B-doped diamond on highly oriented diamond thin film

T_c(onset)=5.0K & T_c(zero)=3.0K

Resistance in a magnetic field & H_{c2} in B-doped diamond on highly oriented diamond thin film

H_{c2}(inset) & H_{c2}(zero) are estimated to be about 5.5T &1.9T.

Phase diagram for T_c and B-concentration

- Boron concentration of our samples are estimated to be about 2-5x10²¹/cm³.
 - Relatively under-doping region
- We will be synthesizing by new method & condition.

• Chasing for higher- T_c

Superconductivity in B-doped SiC -Collaborators-

Z.-A. Ren, J. Kato, T. Muranaka

AC susceptibility

□ M. Kriener, Y. Maeno (Kyoto Univ.)

Searching for new superconductivity in a wide gap semiconductor with a diamond lattice structure

Crystal structure of 3C-SiC

We try to dope B atom for carrier doping.

Background Superconductivity in B-doped Si

B-doping to Si by UV laser

Carrier (hole) density
 ~ 5±2× 10²¹ cm⁻³

E. Bustarret et al., Nature 444, 465 (2006).

Temperature dependence of resistivity

Superconductivity was observed at T_c=1.4 K

Temperature dependence of AC susceptibility

- We observed the in-field hysteresis and the absence of a hysteresis in zero field.
 - Strong evidence for type-I superconductivity.

H-T phase diagram

■ We determined $H_{sc}(0)$ to be (83±5) Oe □ GL parameter $\kappa \le 0.34$ (type-I)

Problem in superconductivity in B-doped SiC

Many approaches to higher- T_c superconductors

1) Carrier-doped CuO₂ planes

- Unidentified Superconducting Objects –
- Extremely large energy gap observed by STM -

2) Cu-oxides having a different crystal structure

- Ladders -
- Lieb model etc...
- Metal superconductors including light elements (boron, carbon etc...)

4) Carrier-doped clusters / nanotubes

Network of elements in Boride, Carbide and Silicide compounds

Superconducting signal in end-bonded multiwalled carbon nanotubes

I. Takesue et al., Phys. Rev. Lett. <u>96</u>, 057001 (2006). N. Murata et al., cond-mat/0703599.

Clathrate-type silver-oxide: Ag_6O_8MX superconductor

-Collaborators-

K. Kawashima and M. Ishii (Aoyama Gakuin Univ.)

M. Kriener, H. Takatsu, S. Yonezawa and Y.Maeno (Univ. of Kyoto)

Crystal structure of Ag₆O₈MX

The silver-oxide Ag_6O_8MX (M = cation, X = anion) has a clathrate-type structure which consists of face sharing Ag_6O_8 cage containing anion (X⁻) at its center.

- •Ag₆O₈AgNO₃ (*T*_c=1.04 K)
- •Ag₆O₈AgBF₄ (*T*_c=0.35 K)
- •Ag₆O₈AgHF₂ (*T*_c=0.15~1.5 K)
- •Ag₆O₈AgHSO₄
- •Ag₆O₈AgHCO₃
- $\textbf{-}Ag_6O_8AgClO_4$

J. Selbin *et al.*, J. Inorg. Nucl. Chem., **20** (1961) 91.
 M. B. Robin *et al.*, Phys. Rev. Lett. **17** (1966) 917.
 M. Jansen *et al.*, J. Alloys and Compounds **183** (1992) 45.

In a previous repot

ex. Ag₆O₈AgNO₃

FIG. 1. The temperature-resistivity curve for a single crystal of $Ag_7O_8NO_3$.

 $Ag_6O_8AgNO_3$ shows multi phase-transitions with decreasing temperature.

Robin and co-workers suggested that these transitions were generated with the structural-phase transitions.

Ag₆O₈AgNO₃ shows superconductivity at 1.04 K

[4] M. B. Robin *et al.*, Phys. Rev. Lett. **17** (1966) 917.
[5] M. M. Conway et al, J. Phys. Chem. Sol. **31** (1970) 2673

Powder X-ray diffraction patterns of $Ag_6O_8AgX (X=NO_3, HF_2)$

Intensity (arb. units)

Single crystalline samples.

We succeeded in synthesizing single crystalline samples of $Ag_6O_8AgNO_3$ and $Ag_6O_8AgHF_2$.

Normal state of Ag₆O₈AgNO₃ and Ag₆O₈AgHF₂

Ag₆O₈AgNO₃

 $Ag_6O_8AgNO_3$ shows phase transitions near 90 K and 180 K.

180 K: Structural phase-transition from Cubic to Tetragonal.

(We confirmed this transition using X-ray diffraction).

90 K: Small phase transition: stopping of NO_3^- ions rotation?

Ag₆O₈AgHF₂

 $Ag_6O_8AgHF_2$ shows phase transition near 110 K. We consider that this transition is generated by stop of HF2- ions spin like $Ag_6O_8AgNO_3$ material.

Superconducting state of $Ag_6O_8AgNO_3$ and $Ag_6O_8AgHF_2$ $Ag_6O_8AgNO_3$

 $Ag_6O_8AgNO_3$ shows superconducting transition at 1.04 K as described in a previous report. We determine a upper critical field: H_{c2} to be 770 Oe and calculated coherence length: ζ to be 42.5 nm.

Ag₆O₈AgHF₂

We confirmed superconducting transition at 1.5 K more clear than previous report and performed some measurements to elucidate superconducting state in $Ag_6O_8AgHF_2$.

Summary

- Electron doped (La, Nd-doping) 14-24-41 system
 - M-I transition is observed in both system
 - □ S~0 is observed in Nd-doping
- Two gap superconductivity in Y_2C_3 (from NMR & SpHeat).
- New type-I superconductivity in B-doped SiC.
- First information for H-T phase diagram by single crystalline Ag-clathrate system

With struggling, struggling,

T_c is getting decreased !!

Finally, how T_c is determined ?

$T_{\rm c}$ = (Luck) × (Spirit) × (Idea)

Searching for New superconducting intermetallic compounds

- Re₇B₃
 (T. Muranaka, A. Kawano)
- Re₃B (T. Muranaka, A. Kawano)
- (W,Mo)₇Re₁₃(B,C) (K. Kawashima, A. Kawano, T. Muranaka)
- W₅Si₃
 (S. Akutagawa, Y. Kanai, T. Muranaka)
- Rh₂Ga₉
 (K. Tanaka, S. Akutagawa)
- Ir₂Ga₉
 (K. Wakui, S. Akutagawa)

NaAISi (S. Kuroiwa, H. Kawashima, H. Kinoshita)

Physical properties of Re₇B₃

University

A. Kawano et al., JPSJ 72 (2003) 1724.

Physical properties of Re₃B

Superconducting properties of Re₃B, Re₇B₃

	Re ₃ B	Re ₇ B ₃	
<i>Т</i> _с [К]	5.0	3.5	
<i>H</i> _{c1} [mT]	8	6	
<i>H</i> _{c2} [T]	5.2	1.8	
λ [Å]	2870	3310	
ξ [Å]	80	135	

From Specific Heat measurement of Re₃B

$$2\Delta_0 / k_B T_c = 3.53, \Delta C / \gamma T_c = 1.92$$

Weak coupling s-wave superconductor

A. Kawano et al., JPSJ 72 (2003) 1724

Physical properties of (W,Mo)₇Re₁₃(B,C)

Superconducting properties of (W,Mo)₇Re₁₃(B,C)

_	W ₇ Re ₁₃ B	W ₇ Re ₁₃ C	Mo ₇ Re ₁₃ B	Mo ₇ Re ₁₃ C
<i>T</i> _c [K]	7.2	7.3	8.3	8.1
<i>H</i> _{c1} [mT]	7.7	4.0	3.0	3.1
<i>H</i> _{c2} [T]	11.4	12.6	15.4	14.8
λ [Å]	2925	4060	4684	4608
ξ [Å]	54	51	46	47

From Specific Heat measurement of

 $W_7Re_{13}(B,C)$ and $Mo_7Re_{13}(B,C)$

 $2\Delta_0 / k_B T_c = 4.2, 4.0 \text{ and } 4.4, 4.2$

Strong coupling s-wave superconductors

K. Kawashima et al., JPSJ 74 (2005) 700.

Physical properties of W₅Si₃

University

S. Akutagawa et al., to be published in Physica C.

Superconducting properties of W₅Si₃

- Type-II superconductor
- DoS at EF is mainly contributed from W orbital.

Physical properties of Rh₂Ga₉

[1] M. Boström et al., Zeitschrift fuer Anorganische und Allgemeine Chemie 631(2-3) (2005) 534-541.

Physical properties of Ir₂Ga₉

Size of single crystal : 2mm × 1.5mm × 0.5mm

Physical properties of NaAlSi

S. Kuroiwa et al., submitted to J. Phys. Soc. Jpn.

University