

Crystal Chemistry Design for Discovery of New Superconductors

Outline:

- Layered cuprates: Hg-based Cu mixed oxides Cu-based oxyfluorides
- Bismuthates
- Borides and vanadites

RESEARCHERS FIND EXTRAORDINARILY HIGH TEMPERATURE SUPERCONDUCTIVITY IN BIO-INSPIRED NANOPOLYM

Paul M. Grant May 2028

Corty-two years ago, Johannes Georg Bednorz and Karl Alex Müller startled the world with their unexpected discovery of superconductivity in layered copper oxide perovskites at temperatures substantially higher than previously thought possible. The history of this breakthrough is well known, and a large number of related compounds were found over the succeeding years. culminating in 2002 with Au-2223—a triple-layer CuO complex with an ambient-pressure transition temperature of 175 K, synthesized by Paul Chu and his collaborators in Houston. Such materials have found a number of communications and electric power applications, especially in distribution cables, transformers and passive RF filters, but remain limited by the need for cryogenic packaging.

of Stanford University envision possibility of very high temp superconductivity in specia signed organic chain system that time, the prevailing Ba Cooper-Schrieffer (BCS) theo cessfully explained all known conductivity as being media electron-phonon coupling. Li served that BCS could apply fermion pairing sustained by eral boson field, including, for ple, one derived from excitons nons. In the weak-coupling lin BCS transition temperature, typically about 10 K. Ev strong-coupling variant of BCS oped by William McMilla Gerasim Éliashberg suggest superconductivity mediated by vibrations would not be possib. 30-40 K: To paraphrase

Paul Grant, Physics Today, May 1998

Au –2223 "Au2Ba2Ca2Cu3O8" VCu = +2

Double chains of the AuO4 squares \Rightarrow orthorhombic symmetry dAu-O = 2.06 Å in AuBa2Y0.6Ca0.4Cu2O7 (Tc=80K) (P. Bordet et al. Physica C 276 (1997) 237)

CuO₂ layer

Empirical criteria for superconductivity in layered cuprates:

1) Filling of the s* conducting band (formal Cu valence)

- +2.05 \leq V_{Cu} \leq +2.25 - *p*-type SC (carriers - holes) - +1.8 \leq V_{Cu} \leq +1.9 - *n*-type SC (carriers - electrons)

2) $3d_{x^2-y^2}(Cu)$ and $2p_{x,y}(O)$ overlap: $1.9\text{\AA} \le d_{eq}(Cu-O) \le 1.97\text{\AA}$, $\angle Cu-O-Cu \approx 180^{\circ}$

3) nearly two-dimensional structure: $d_{ap}(Cu-O) \ge 2.2 \text{\AA}$

Perovskite structure

"infinite layer" structure CaCuO₂ (LaNiO₂)

Influence of cation disorder: $Nd_{1+x}Ba_{2-x}Cu_3O_{7-\delta}$

NdBa ₂ Cu ₃ O _{7-δ}	$\delta = 0.19$	<i>a</i> =3.8633(9) Å	<i>b</i> =3.916(1) Å	<i>c</i> =11.745(7) Å	VCu = 2.21
$Nd_{1.2}Ba_{1.8}Cu_3O_{7-\delta}$	$\delta = 0.09$	<i>a</i> =3.8902(7) Å		<i>c</i> =11.684(6) Å	VCu = 2.21
Nd _{1.5} Ba _{1.5} Cu ₃ O _{7-δ}	$\delta = -0.05$	<i>a</i> =3.8803(8) Å		<i>c</i> =11.636(7) Å	VCu = 2.20
$Nd_{1.7}Ba_{1.3}Cu_3O_{7-\delta}$	$\delta = -0.15$	<i>a</i> =3.883(1) Å		<i>c</i> =11.541(6) Å	VCu = 2.20

 $Nd_{1+x}Ba_{2-x}Cu_3O_{7-\delta}$

Cu mixed oxides with fluorite slab

Phase with fluorite slab	T _c	Parent structure	T _c
$La_{0.9}Sm_{0.9}Sr_{0.2}CuO_{3.97}$	27K	La _{1.6} Sr _{0.4} CaCu ₂ O ₆	60K
$Pb_2Sr_2Eu_{1.33}Ce_{0.67}Cu_3O_{10}$	24K	$Pb_{2}Sr_{2}Y_{0.6}Ca_{0.4}Cu_{3}O_{8}$	70K
$\operatorname{Bi}_{2}\operatorname{Sr}_{2}\operatorname{Eu}_{1.7}\operatorname{Ce}_{0.3}\operatorname{Cu}_{2}\operatorname{O}_{10+\delta}$	28K	$Bi_2Sr_2CaCu_2O_{8+\delta}$	80K
$Eu_{1.7}Sr_{1.7}Ce_{0.6}Cu_{3}O_{8+\delta}$	36K	YBa ₂ Cu ₃ O _{7-δ}	94K

Intergrowth structures

CuO₂ layer

Perovskite block Chemical bonding/coordination, distance matching, electro neutrality, chemical co-existence

$HgBa_2CuO_{4+\delta}$ (Hg-1201)

Hg-based superconducting Cu mixed oxides $HgBa_2Ca_{n-1}Cu_nO_{2n+2+\delta}$

HgBa₂Ca_{n-1}Cu_nO_{2 $n+2+\delta$} series

Influence of high pressure

Fluorination of HgBa₂Ca₂Cu₃O_{8+δ}

The dependence of T_c vs *a* parameter for oxygenated and fluorinated HgBa₂Ca_{n-1}Cu_nO_{2n+2+ δ} phases, n=1-3

dT_c/d*a* ≈ **-1.35**×**10**³ K/Å for Hg-bearing HTSC ∠Cu2-O2-Cu2 = **177.3 - 178.4**° for Hg-1223

 $dT_c/da \approx -1.0 \times 10^3$ K/Å for epitaxial $La_{1.9}Sr_{0.1}CuO_4$ thin films (J.-P. Locquet et. al., Nature, 394, 453(1998))

 $dT_c/da \approx -1.6 \times 10^2$ K/Å under pressure ∠Cu2-O2-Cu2 = 175.0° for Hg-1223 under 2GPa

Fluorination of La₂CuO₄

 La_2CuO_4 a = 5.352Å b = 5.400Åc = 13.157Å

I. La₂CuO₄F_d (δ≤0.18)

 $T_c = 35 - 40K$ XeF₂, t = 150 - 200 °C a = 5.328Åb = 5.427Åc = 13.194Å II. $La_2CuO_{4-x}F_y$ XeF₂, t = 230 – 250 °C a = 4.038Åc = 13.093Å III. $La_2CuO_{3.6}F_{0.8}$ XeF₂, t = 300 - 400 °C a = 17.36Åb = 5.62Åc = 10.59Åb = 91.5°

Fluorination of YBa₂Cu₃O_{6.11}

 $YBa_{2}Cu_{3}O_{6}F_{2}$

Anion-deficient perovskites $La_{8-x}Sr_{x}Cu_{8}O_{20-\delta}$ (x~1.5)

Fluorination of Bi-2201

Bi-2201

Bi-2201F

Superconducting properties of fluorinated and oxygenated layered cuprates

Compound	T _c (K), oxyfluoride	T _c (K), oxygenated prototype
YBa ₂ Cu ₃ O ₆ F ₂	94	92
$Y_2Ba_4Cu_7O_{14}F_2$	62	80
HgBa ₂ CuO ₄ F _{0.24}	97	97
$HgBa_2CaCu_2O_6F_\delta$	128	127
$Hg_{0.8}Ba_2Ca_2Cu_{3.2}O_8F_{\delta}$	138	134
$Sr_2CuO_2F_{2+\delta}$	46	-
$La_2CuO_4F_{\delta}, \delta \le 0.18$	35 - 40	38
$Nd_2CuO_{3.7}F_{0.3}$	27	24
Sr ₂ CaCu ₂ O _{4.6} F ₂	99	-
Sr ₂ Ca ₂ Cu ₃ O _{6.2} F _{3.2}	111	-
Sr ₂ Nd _{0.2} Ca _{0.8} Cu ₂ O ₅ F	85	-
$La_{1.6}Sr_{0.4}CaCu_2O_6$		60
Sr ₂ CaCu ₂ O _{4+x} Cl _{2-x}	80	

Problems of synthesis of oxyhalogenides

Metastable compounds (easily decompose or redox reactions):

1) by soft chemistry:a) LT fluorination of parent compoundsb) anion exchange

2) under high pressure

3) by electrochemistry

Bi-based superconducting oxides

Compound	Tc	Reference
BaPb _{0.75} Bi _{0.25} O ₃	12K	Sleight A.W. et al., SSC 17 (1975) 17
Ba _{0.6} K _{0.4} BiO ₃	30K	Mattheiss L.F. et al., PRB 37 (1988) 3745
		Cava R.J. et al., Nature 332 (1988) 814
BaPb _{0.75} Sb _{0.25} O ₃	3.5K	Cava R.J. et al., Nature 339 (1989) 291
$Sr_{0.4}K_{0.6}BiO_3$	12K	Kazakov S.M. et al., Nature 390 (1997) 147
K _{0.9} Bi _{1.1} O ₃	10K	Khasanova et al., Physica C 305 (1998) 275
$La_{0.2}K_{0.8}BiO_3$	12K	Khasanova N.R et al., JSSC 144 (1999) 205

Superconductivity vs. structure distortions

From 3d to 2d structures

L.F. Mattheiss (RPB 45 (1992), 12528): Superconductivity in layered bismuthates?

Layered Bismuthates

$A_3Bi_2O_7$ (A = Ba, Sr, K, Rb)

 $Ba_{1.9}K_{1.1}Bi_2O_7$ Ba/K ratio = 1.4 -1.8

 $Sr_{1.6}K_{1.4}Bi_2O_7$ Ordering Sr and K cations

Properties

$(Ba,K)_3Bi_2O_7$

 $(Sr,Rb)_3Bi_2O_7$

Structure features

	Ba _{1.7} K _{1.3} Bi ₂ O ₇	Sr _{1.6} K _{1.4} Bi ₂ O ₇	(Sr,Rb) ₃ Bi ₂ O ₇
Bi – O1 _{ap} (Å)	2.174	2.154	2.128
Bi – O3 _{ap} (Å)	2.035	2.040	2.030
Bi – O2 _{eq} (Å)	2.131	2.098	2.110
< Bi – O >(Å)	2.12	2.10	2.10
∠(Bi-O2-Bi) (°)	170	163.5	165
V _{Bi}	4.65	4.7	~4.7

(Ba,K)₂BiO₄ - 0201

S.G. / 4/mmm a = 4.3Å c = 13.2Å

EDX: Ba/K/Bi = 1.3/0.7/1.0 (VBi = + 4.7)

Search for new B-based superconductors

MgB₂ P 6/mmm a=3.086 Å c=3.521 Å Rh₅B₄ P 6_3 /mmc a=3.306 Åc=20.394 Å

PbVO₃. Comparison with other ABO₃ perovskites

Synthesis:

At ambient pressure:

 $PbO + VO_2 \Rightarrow mixture of known phases$

But at 40-60 kbar/700°C: PbVO₃

Figure 4. Energy-dispersive X-ray powder diffraction patterns for $PbVO_3$ at different pressure and temperatures. (*hkl*) of the tetragonal (T) and cubic (C) phases are given.

A.A. Belik et al. *Chem. Mater.* **2005,** *17,* 269 *Road2RTS, Loen, Norway, 17 - 23 June 2007*

PbVO₃. Comparison with strontium vanadium oxides

Pressure dependence of resistivity of PbVO₃ at room temperature

from: *A.A. Belik et al. Chem. Mater.* 2005, 17, 269