

Searching for Higher T_cs by observing T_c

RTS Workshop - Loen, Norway T. H. Geballe

Stanford University, June 17-24 2007

Outline

Insights from

- variation of T_c with structure and phase
- variation of T_c with composition
- variation of T_c with external parameters
- follow up on unknown trace signals

Bednorz-Mueller Cuprate

"214" with two TIO layers inserted between

TI,Pb,Bi ions skip 6S¹ in solid state

- eg: TI¹⁺ & TI³⁺; Pb²⁺ & Pb⁴⁺; Bi³⁺ & Bi⁵⁺
- Skipped valence means negative $U_{eff} = (E_{n+1} E_n) (E_n E_{n-1})$
- Origin: correlation energy and polarization energy

TI 4f corelevel in 2223 between +1 and +3

T. Suzuki, et. al., "Chemical state of TI in the superconductor TI₂Ba₂Ca₂Cu₃O₁₀ *Physical Review B* **40**, 7 (1989).

TI-doped PbTe

PbTe:

- small gap semiconductor
- rock salt structure -- Pb²⁺Te²⁻
- $\varepsilon_{\infty} \sim 30 40 \& \varepsilon_0 \sim 1000$
- Pb vacancies ~10¹⁸ 10¹⁹ holes/cm³ (degenerate semiconductor)

TI substitution:

- TI substitutes on Pb⁺² site
- \rightarrow expect spontaneous disproportionation to balance charge...

 $2\mathsf{T}\mathsf{I}^{2+} \xrightarrow{} \mathsf{T}\mathsf{I}^{+} + \mathsf{T}\mathsf{I}^{3+}$

Superconductivity in PbTe model system

• $T_c \sim 1.5$ K of PbTe is 2 orders > comparable superconductors (J. K. Hulm NRL Report 6972 (1969)).

• no superconductivity for any other impurities in PbTe...

Resonant energy levels

PbTe has Pb vacancies

- $E_F \sim 80 \text{ meV}$ below top of valence band
- ~10¹⁹ holes/cm³

First TI impurities:

- Below E_F (i.e. TI^{1+})
- i.e. hole concentration increases

More TI impurities: 1+ and 3+ become degenerate

- hole conc. increases until E_F reaches v_{bs}
- ~10²⁰ holes/cm³

. . .

• Fermi level pinned by two-electron states

- Critical concentration of impurities x_c for onset of superconductivity
- For x< x_c Hall indicates 1 carrier/TI
- For x> x $_{c}$ T_c increases linearly, while Hall number flattens

How does TI play in the superconductivity of TI-doped PbTe?

Low-T anomaly in resistivity

- size of anomaly scales with x
- log upturn over restricted range?
- T² at low T...

Y.Matsushita, I. R. Fisher, et al PRL **94** 157002 (2005) M. Dzero and J. Schmalian, PRL **94** 157003 (2005)

Susceptibility

- diamagnetic (low DOS)
- less diamagnetic for larger TI concentrations
- no "Curie tail"
- \rightarrow no magnetic impurities to ~ 5 10 ppm level

Charge-Kondo effect

- pseudo-spins correspond to 6s⁰ and 6s²
- Andreev "spin flip" processes swap 0 \leftrightarrow 2 electrons

- will contribute log term to resistivity & unitary scattering
- dynamic screening of the negative-U impurity below characteristic T_k

T_c and resistance minimum

TI-doped PbTe:

- superconducts with $T_{\rm c} \sim 1.5~{\rm K}$
- only impurity that causes superconductivity
- due to TI acting as negative-U centers?

Anomalous transport properties:

- upturn in resistivity, saturates at low-T
- unlikely localization or magnetic Kondo

Charge Kondo effect?

• Strong case for neg U superconductivity being *electronic* rather than polaronic

Model of superconductivity in TIdoped PbTe

(1) Dynamical mixed valence:

- charge Kondo scattering depends upon quantum valence fluctuations
- valence fluctuations can lead to superconductivity (i.e. an electronic pairing mechanism)

Schuttler, Jarrel & Scalapino, PRB **39**, 6501 (1989).

(2) Interaction of T_c and T_K :

- Dzero and Schmalian, PRL 94, 157003.
- predict re-entrant behavior at very low T due to pair-breaking effects - not seen for T > 20 mK)

2 requirements for neg U centers to be sc pairing centers

- 1) Degeneracy (within kT) between paired and unpaired configurations
- 2) overlap with band states or with each other

Charge reservoir layers

```
•Hg-O

•HgBa<sub>2</sub>CuO<sub>4+\delta</sub> (Hg1201)

•HgBa<sub>2</sub>CaCu<sub>2</sub>O<sub>6+\delta</sub>(Hg1212)

•Hg(12(n-1)n)
```

```
•TI-O,
•TI(12(n-1)n), TI<sub>2</sub>O<sub>2</sub>
```

```
•Bi-O
```

- •All are neg U ions, potential pairing centers
- •All are very high T_c
- •Degeneracy is assured if CRL layers can vary doping

Hg cuprates

T_c as a function of P and number of layers for *optimally*-doped.

C. W. Chu et al.

Hg cuprates

dT_c/dP as a function of doping from *underdoped* region to *optimally doped*. Behavior is inconsistent with charge transfer; is consistent with pairing centers in HgO layers
 Y. Cao et al., PRB 52, 6854 (1995)

Hg-1245 Optimally-doped

T_c vs n= 3 to 7 for Hg and Tl T_c is remarkably the same

A.lyo et al., Physica C, Superconductivity 445-448 (2006) 17

Nuclear relaxation of Cu

H. Kotegawa et al., Physical Review B 65 184504 (2002)

T_{c (max)} vs doping

- No reason for $T_{c(max)}$ to be a universal function of the doping of (CuO₂).
- Coupling between layers can be stiffened by resonant pair tunneling across neg-U pairing ions or clusters of them in BiO layers.

V. Oganeysan et al., PRB 65 (2002) 1725041

Phase diagram

T_{c(max)} shift to lower concentration from .16 (214) to .12 (BSSCO) can be understood by increase in coupling between layers (i.e., stiffness).

J. Emery and S.A. Kivelson, Nature **374** (1995) 434.

Other pairing centers?

Oxygen vacancies as an example

Oxygen vacancies

- Oxygen vacancies can be either F centers (localized 2-electron states), or
- Delocalized, donating 2 electrons to the cb
- Candidates for pairing centers if localized and delocalized states are degenerate
- Oxygen vacancies can be produced by annealing in vac, N₂ etc and by PLD in low p(O) ~ 10⁻⁶ torr produces oxygen vacancies
 eg. Wolter Siemons *et al.* PRL **98** 196802 (2007).

Infinite Layer Structures

With O vacancies

Magnetic susceptibility curve (\bullet : Zero-field cooling. O: Field cooling. Ca_{0.2}Sr_{0.8}CuO₂ formed under the substrate temperature of 480°C and NO₂ pressure of 5x10⁻⁶ mbar.

X. Li et al., Jpn.J. Appl. Phys. 31 (1992)

Resistivity vs. temperature plots for different hole doping schemes. (a) $Ca_{0.3}Sr_{0.7}CuO_2$. (b) $(Ca_{0.3}Sr_{0.7})_{0.9}$ (c) $Ca_{0.93}Na_{0.07}CuO_2$ deposited with ozone.

S. Oh and J.N. Eckstein, Thin Solid Films **483** (2005).

$Sr_2CuO_{3+\delta}$

Schematic structure of $Sr_2CuO_{3+\delta}$, [formula also $Sr2CuO_{4-(1-\delta)}$]

Q.Q Liu et al., Physical Review B 74 (2006).

DC magnetic susceptibility

P.D. Han *et al.*, "High-pressure synthesis of the $Sr_2CuO_{3+\delta}$ superconductor Observation of an increase in T_c from 70K to 94K with heat treatment" *Physica C* **228**, 129 (1994).

Temperature dependence of the dc magnetic susceptibility in the field-cooling mode for as-prepared $Sr_2CuO_{3+0.4}$, and those after annealing at various temperatures in the N₂ atmosphere. Q.Q. Liu *et al.*, Physical Review B **74** (2006).

Remarkable resemblance (not noted by Liu et al.)

Infinite-layer Sr_{0.9}La_{0.1}CuO₂

Typical difference between field cooled and zero field cooled

C.U. Jung et al., arXiv:cond-mat 0010304 (2000).

Identity of Superconducting Phase

- Liu *et al.* have argued that sc is due to 15% minority phase, ~ vacancies on apical O sites
- Liu *et al.* dismissal of Han sample "very small volume fraction and oxychloride contamination "
- Comparison [magnitude of T_{cs} and Meissner signals are the same, majority phase has same lattice constants; both decompose above 350 - 400 °C post anneal.]
- Han *et al.* argue majority phase is sc phase. Careful TEM, EELS and simulation (Y.Y. Wang et al and H. Zhang et al Physica C **255** (1995) 247-265) determine vacancies are on CuO₂ layers!!?
- An OPEN question

$Sr_{2}CuO_{4-\delta}$ ($Sr_{2}CuO_{3+\delta}$)

Possible reasons for enhancement up to 95K-

- Impurities (oxidants) introduced in synthesis
- Periodic ordering of vacancies on apical O sites resulting in reduced Coulomb disorder (Liu et al.)
- 30% of oxygen sites are vacant- neg-U pairing (THG)
- C axis reduced ~ 0.7 A w.r. $(LaSr)_2CuO_4$

SrTiO₃ superconductivity A Brief History

Theory

- M.L. Cohen multi-valley phonon pairing (1964)^{1,2}
- Appel soft phonon pairing (1969)³
- Mattheiss (1972)⁴ warped 2-band single minimum
- Jarlborg low-q, large lambda (2000)⁵
- Micnas et al. bipolaron (1990)⁶

Experiments

- Schooley, Koonce, Cohendiscovery in (1964)⁷
- J.K. Hulm *et al.* 1966 -T_c>>other low density superconductors
- N. E. Phillips *et al.* (1969) T² component in heat capacity?
- K. Meyer (thesis, Stanford 1993, unpublished)

T_c vs. carrier concentration

J. K. Hulm Spring Superconducting Symposia NRL Report 6972 (1969).

SrTiO₃ References

- 1. V.L. Gurevich, A.I. Larkin and Yu A. Firsov, Solid State 4, 131 (1962).
- 2. M.L. Cohen, Phys. Rev. **134**, A511 (1964).
- 3. J. Appel, Superconductivity 26-29 (1969).
- 4. L.F. Mattheiss, Phys. Rev. B 6, 4740 (1972).
- 5. T. Jarlborg, Phys. Rev B **61**, 15 (2000)
- 6. R. Micnas, J. Ranninger and S. Robaszkiewicz, Rev. Mod. Phys. **62**, 113 (1990)
- 7. J.F. Schooley, W.R. Hosler, and M.L. Cohen, Phys. Rev. Letters **12**, 474 (1964), C.S.Koonce et al Phys. Rev. B **163** 380 (1967)
- 8. J.K. Hulm, C.K. Jones, and R. Mazelsky, Superconductivity Proc. International Conf on Science of Superconductivity [Frank Chilton ed, North Holland(1969).]
- 9. N.E. Phillips, B.B Triplett, R.D. Clear and H.E. Simon, *ibid* Superconductivity (1969).

Oxygen Vacancy in cubic SrTiO_{3-x}

- 1. W. Luo *et al.*, Phys. Rev B **70**, 214109 (2004).
- 2. D. Ricci *et al.*, Phys. Rev. B **68**, 224105 (2003).

Periodic LCU study of F Centers in cubic and tetragonal SrTiO₃

Calculation shows:

- (i) Defect-produced perturbation in the tetragonal phase structure is stronger than in cubic lattice
- (ii) F center wave function is localized cubic phase and is much less localized in the tetragonal

A. Stashans, *et al.*, "Periodic LUC study of F centers in cubic and tetragonal SrTiO₃," *Materials Letters* **50**, 145 (2001).

Tungsten Bronzes A_xWO₃

- 3D stiochiometric perovskites for x = 1/3, $T_c < 2K$.
- T_c rises up to 6 K in metastable regions, x < 1/3
- T_c = 90K sc signal single crystal Na_xWO₃ (annealed in N₂) ESR and tunneling support but do not prove Reich, S.; Leitus, G.; Tssaba, Y.; Levi, Y.; Sharoni, A.; Millo, O., Journal of Superconductivity (2000); A. Shengalaya, K.A. Muller, S. Reich and Y. Tsabba, Eur. J. Phys. B; Reich, S.; Leitus, G.; Tssaba, Y.; Levi, Y.; Sharoni, A.; Millo, O. Journal of Superconductivity, 13(5) (2000) 855-861
- No further confirming results a careful study of oxygen annealing is called for

Interface superconductivity?

- Granular deposited AI/AIO interfaces
- Sulfur /graphite heat treated interphases

Kopelevich et al., J. Low. Temp. Phys. 119 (2000) 69.

• Trace signals in pulse-annealed Cu/single crystal CuO interfaces,

Osipov et al., JETP 93 (2001) 1082.

• in multiphase cuprates, and numerous other reports all of which may not be spurious.

Granular Metal Superconductivity

- 1. History dates back to the beginning of the 20th
 - **Century** (B. Abeles -- Applied Solid State Science Vol 6; Advances in Materials and Device Research, R. Wolfe Ed, Academic Press, pp 1-109, 1976)
- 2. Recent update (G. Deutscher -- New Superconductors From Granular to High T_c, World Scientific 2006)

Vapor phase growth granular Al

(films deposited in the presence of oxygen)

- 1. Nucleation and growth of Al nanoparticles
- 2. Expulsion of amorphous AI_2O_3 to periphery
- 3. AI_2O_3 encapsulates AI; growth stops
- 4. Experimental control of size and distribution
- 5. Al/Al₂O₃ ratio determines transport

Three regions of temperature dependent resistance in normal state as function of Al fraction

Temperature dependences of the normal state resistivity from below Mott transition to metallic (adapted from Deutscher p72).

Unexplained enhancement of T_c

Critical temperature of granular AI deposited at room temperature (continuous line) and liquid nitrogen temperature (broken line) (Deutscher, p 73). [Note- $T_c \sim 3T_c$ bulk]

Superconductivity and ferromagnetism in graphite-S

- Kopelevich and coworkers since 1999 report trace fm and sc signals at high T. Heat treated fine graphite particles in sulfur- no new phases, pristine lattice constants.
 Kopelevich et al. J. Low. Temp. Phys. 119 (2000) 69.
- True sc signals (T_c= 9K) measured in 3 year old sample

Moehlecke, Ho and Maple, Phil. Mag. B 82 (2002) 1335.

References

- Some discussion and many references are given in recent publications.
 - Vol 19, J. of Superconductivity and Novel Magnetism, the special edition dedicated to V. L. Ginsburg, edited by I. Bozovic (2006)
 - The chapter by Geballe and Koster in "Treatise on Superconductivity", (Springer 2007) initiated by Bob Schrieffer and edited by James Brooks

Conclusion

- There are good avenues and reasons for searching.
- Better understanding of the role of oxygen vacancies in cuprates (can they account for identical behavior in TI and Hg multilayers? T max in chain 123?) and in many cases where annealing in reduced O is necessary
- Find new negative U pairing centers (and maybe other pairing mechanisms)- adjust chemical potential
- Investigate metastable interfaces
- Investigate unidentified trace signals ("USO's"- Chu classification) using new scanning probe techniques
- Be prepared (Pasteur) and be LUCKY!

Thank you!!, THG