Road to RTS

Temperature ~250K

Expectation for RTS materials for electronic applications

June 22, 2007 Shinya Hasuo ISTEC/SRL

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

Example of commercially available or practical superconductive systems

Example of commercially available or practical superconductive systems

HTS filters

An example of application for 2GHz-band receiving

For diversity receiving Volume: 15L

A trial open-air subsystem with developed HTS filters for 2GHz band

http://pr.fujitsu.com/jp/news/2002/09/20.html

Example of commercially available or practical superconductive systems

HTS filters

HTS and LTS SQUID systems

SQUID for food inspection system

National University Corporation Toyohashi Univ. of Technology

Advance Food Tech. Co.,Ltd. Sumitomo Electric Hightechs Co.,Ltd.

Example of commercially available or practical superconductive systems

- HTS filters
- HTS and LTS SQUID systems
- LTS SIS mixers (for ozone monitoring system, for radio observatory)

Ozone monitoring system installed in 4K refrigerator

http://edevice.fujitsu.com/fvd/eco/siso 100.html

Nobeyama radio observatory

SIS mixers inside

From NRO home page

http://www.nro.nao.ac.jp/~nro45mrt/pictures/photo/image6/img203_800.jpg

Example of commercially available or practical superconductive systems

- HTS filters
- HTS and LTS SQUID systems
- LTS SIS mixers (for ozone monitoring system, for radio observatory)
- LTS voltage standard systems

Voltage standard system

From HYPRES home page http://www.hypres.com/

High-speed digital circuit development

Present status of high-speed digital technology

LTS circuits

- LSI design technology Semiconductor LSI designer can design SFQ LSIs.
- Fabrication Process technology
 One million JJ circuits are possible to make.
- High speed circuit operation
 20-50 GHz clock operation is feasible.

HTS circuits

- Fabrication Process technology 100 JJ circuits are possible to make.
- Circuit operation
 - A few tens JJ circuits are feasible to operate.

Niobium junction integration

Features

1µm

- •Planarized 9 Nb layers
- •Nb/AlOx/Nb with critical current density of 10 kA/cm²
- •Minimum junction size : 1μ m

Ref: T.Satoh et al, Physica C (2006) P.445

One million SQUID array for process check

Chip size: $8mm \times 8mm$

Ref: M.Hidaka et al, Supercon. Sci. Tech. (2006) P.S138

LTS 4×4 SFQ switch

Number of JJ: 2812 JJ (4 × 4 switch part: 1478 JJ) Maximum clock frequency: 45 GHz

Ref: S.Yorozu et al, HPSR 2004

Superconductive LAN system with SFQ switch

Ref: Y.Kameda et al, ISEC2007

HTS sampler system

Ref: H.Suzuki et al, ISEC2007

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

RTS material application to passive devices

Wirings (LSI wirings, printed circuit board, co-axial cables, and all other cables)

LSI operation at 300K with 1.8µm width wiring

M.Taguchi, Nikkei Electronics, 1987, Nov.30 issue, p.153

LSI operation at 77K with 1.8µm width wiring

M.Taguchi, Nikkei Electronics, 1987, Nov.30 issue, p.153

LSI operation at 77K with 0.5µm width wiring

M.Taguchi, Nikkei Electronics, 1987, Nov.30 issue, p.153

LSI cross section

http://home.hiroshima-u.ac.jp/nanostr/sonota.pdf

RTS material application to passive devices

- Wirings (LSI wirings, printed circuit board, co-axial cables, and all other cables)
- Microwave components (filters, antennas, transmission lines and cavities)

Superconductive filters

HTS filter should be installed in a refrigerator. RTS filter can be used as it is.

Easy for installing in a base station

RTS material application to passive devices

- Wirings (LSI wirings, printed circuit board, co-axial cables, and all other cables)
- Microwave components (filters, antennas, transmission lines and cavities)
- Magnetic shielding

Low-Tc 64ch SQUID System

Superconductive magnetic shielding will be used with conventional high-µ shielding

This work was supported by the Ministry of Economy, Trade and Industry and the New Energy and Industrial Technology Development Organization (NEDO)

RTS passive devices

- Basically we can apply RTS materials to any passive electronic components and systems.
- It is most important whether the RTS material can be processed to desired shape and it exhibits necessary performance.
- Present HTS materials have some restrictions such as substrate selection and high processing temperature.

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

Effects of thermal noise

- Passive devices are not fatally affected by thermal noise.
- Performance of active devices are strongly affected by thermal noise.
- Thermal noise

 $V_n = SQRT(4k_BTRB)$

 $i_n = SQRT(4k_BTB/R)$

 $P_n = 4k_BTB$

P_n=16.56nW@300K, B=1THz

0.232nW@4.2K, B=1THz

Josephson Transmission Line (JTL)

Temperature dependence of SFQ pulse waveform

Simulated by Akira Yoshida

Temperature dependence of SFQ pulse waveform for larger I_c and I_cR_n

Simulated by Akira Yoshida

ISTEC

SIS mixer (EM detector)

Noise temperature (Sensitivity limit) $T_N = \sim hv / k_B$ =48K@1THz =4.8K@100GHz

Experimental result (Example) $T_N = \sim 60 K@430 GHz$ $= \sim 3 hv/k_B$

Ambient temperature: 300K

RTS material application to active devices

- Handy SQUID system may be useful for a convenient MCG or other applications.
- SFQ digital circuits are not hopeful because of crucial thermal noise.
- SIS mixers has also problem of thermal noise.
- Voltage standards may be possible if we can make uniform Josephson junction array.

High-quality Josephson junction is a key for active device applications of RTS.

- Classification of superconductive electronic devices
- Examples nt status of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

Role of LTS, HTS and RTS devices

	LTS
(T:	=4.2K)

HTS
(T=77K)

RTS (T=300K)

Key feature: High-speed, high-sensitivity and extremely low-noise

- High-speed digital circuit for computers and routers
- High-sensitive SQUID
- •SIS mixers

Key feature: Compact system, high-speed, and high-sensitivity

- Digital receiver system for telecommunication
- Compact SQUID
- Measurement systems such as a sampling oscilloscope

Key feature: Refrigerator free and improvement of metal conductivity

- Microwave components
- Wirings
- Magnetic shielding
- •Handheld SQUID (?)
- Voltage standards (?)

Lower temperature operation, such as 4.2K operation of HTS devices and 77K operation of RTS active devices, may be possible to improve their performance.

RTS world

ISTEC /

Ubiquitous Superconductive Electronics !!!

- Classification of superconductive electronic devices
- Examples of LTS and HTS devices
- RTS material application to passive devices
- RTS material application to active devices
- Expectation for RTS materials for electronic applications
- Request for RTS materials from the viewpoint of an electronic device researcher

RTS material should be •••

- easy to process with physical and/or chemical treatment.
- deposited on any substrate at low temperature (<200°C).
- stable for long term preservation.
- uniform in nm-scale in the case of active device application.

3 HTS layer structure with smooth surface

2-layer structure

3-layer structure

Optimization of deposition condition with SrSnO₃(SSO) insulation layer
 Reproducible deposition of smooth layer with surface roughness less than 2 nm

RTS material should be •••

- easy to process with physical and/or chemical treatment.
- deposited on any substrate at low temperature (<200°C).
- stable for long term preservation.
- uniform in nm-scale in the case of active device application.
- able to carry high current density as high as 10⁷ A/cm².

Conclusion

- Refrigeration free is the most important nature of RTS materials for electronic applications.
- Passive device applications are quite hopeful in various field of electronics, especially in consumer market.
- Active device applications are doubtful. But, if RTS Josephson junction characteristics exhibit high-quality and uniformity, active devices may be practical.

Supplements

Image of HTS and LTS applications

Difference of HTS and LTS systems from the view point of users

Big difference is cooling scale !

≻HTS systems

- Operated in a small cooler (sometimes in a palm-top cooler)
- Suitable for small scale system
- Competitors are conventional low-end systems, such as highspeed measurement systems

≻LTS systems

- Suitable for large scale system
- Competitors are conventional high-end systems
- The larger the system becomes, such as supercomputers, the better the performance

Comparison of HTS and LTS applications referring semiconductors

Semiconductors

Si vs Compound semiconductors (GaAs, InP, GaN, InAs, InGaAs, etc)

Applications of Si

Supercomputer High-speed processor (Large scale systems) Applications of Compound Semiconductors

Optical communication system
Satellite communication system
(Small scale high-speed systems)

Superconductors

Nb vs HTS (Y, Bi, Tl, Hg-systems, etc)

Applications of LTS

High-speed router Large scale low power server (Large scale systems)

Applications of HTS

- •A/D converter system
- High-speed measurement system
- (Small scale systems)

HTS device structure

Demonstration of elementary SFQ circuits

Ring Oscillator (21 JJ, Toshiba) 57 GHz @20K

 Σ - Δ AD modulator (13 JJ, Hitachi) 100 GHz @20K

SQUID-array interface (25 JJ, SRL)

- Latch-type interface (10 JJ, Fujitsu)
 >I mV output @30 K
- Sampler circuit with JTL buffer (25 JJ, NEC) 20 GHz signal observation @35 K
- QOS comparator (10 JJ, SRL) 82 GHz @40 K

Design of HTS circuits

SFQ-dc circuit suitable for HTS devices was designed.
 Operating margin was increased twice (±22%)@22K operation.
 Confluence buffer, splitter, and RS-flip flop circuits were also operated.

HTS 100 JJ circuit

Circuit including 101 JJs

Ref: H.Wakana et al (ISTEC), ISS2004

Operation at 29 K

Superconducting sampling oscilloscope

Research items for low temperature packaging

- Signal conversion from semiconductor to SFQ
- Multi-chip module (MCM)
- Signal conversion from SFQ to semiconductor
- Low temperature cooling
- Latency between low temperature and room temperature

Superconducting MCM

Multi Chip Module

SFQ signal can propagate in between LSIs.

Overcome the difficulties

Filters SQUIDs

Technology strategic map

- (1) Technology r
- (2) Deployment scenario
- (3) Road map

We are here (2006)

Thank you for your kind attention.

SFQ circuits

