What is Optimal for High Temperature Superconductivity?

(What are the key features for **a** mechanism of HTC?)

E.Fradkin, H.Yao, W-F. Tsai, E.Arrigoni, I.Martin, D. Poldolsky V.J.Emery and S. Chakravarty

A distant fjord in Norway, 2007

Hamiltonian engineering:

What Hamiltonian would give the highest possible superconducting T<sub>c</sub>?

Problem #1: We can't solve most strongly interacting electronic models in d > 1.

Problem #2: The question is not well defined unless we specify constraints on what we can vary.

### What is needed for a large T<sub>c</sub>?

A high pairing scale  $\Delta_0$ 

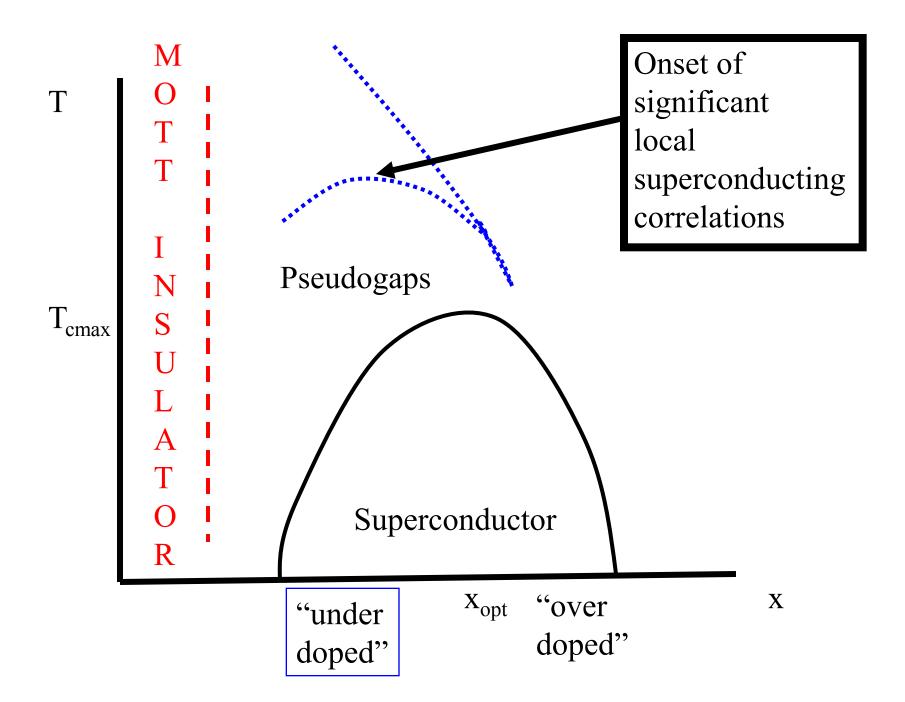
A large phase coherence (condensation) temperature  $T_{\theta} \sim \rho_s$ 

No "competing" instability to ruin things.

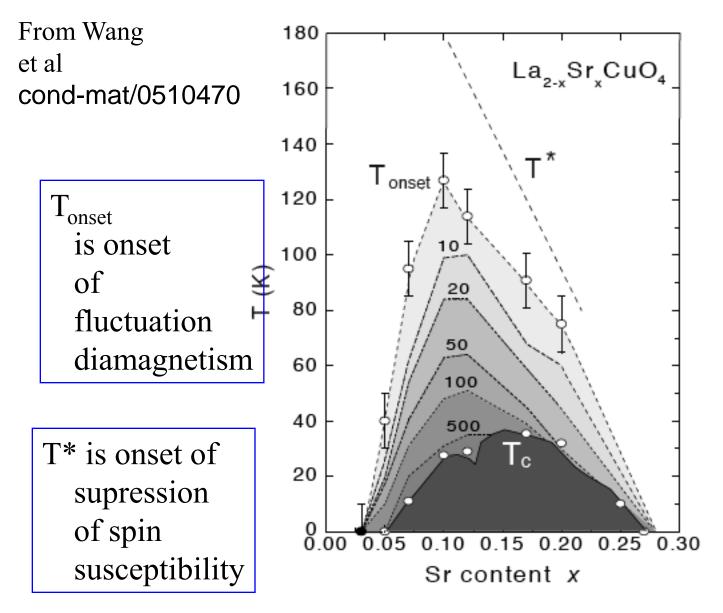
Unless the superconducting phase is cut off by a (first order) transition to a competing phase, optimal  $T_c$  occurs at a crossover from a pairing dominated regime -  $T_c \sim \Delta_0$ to a condensation regime -  $T_c \sim T_{\theta}$ 

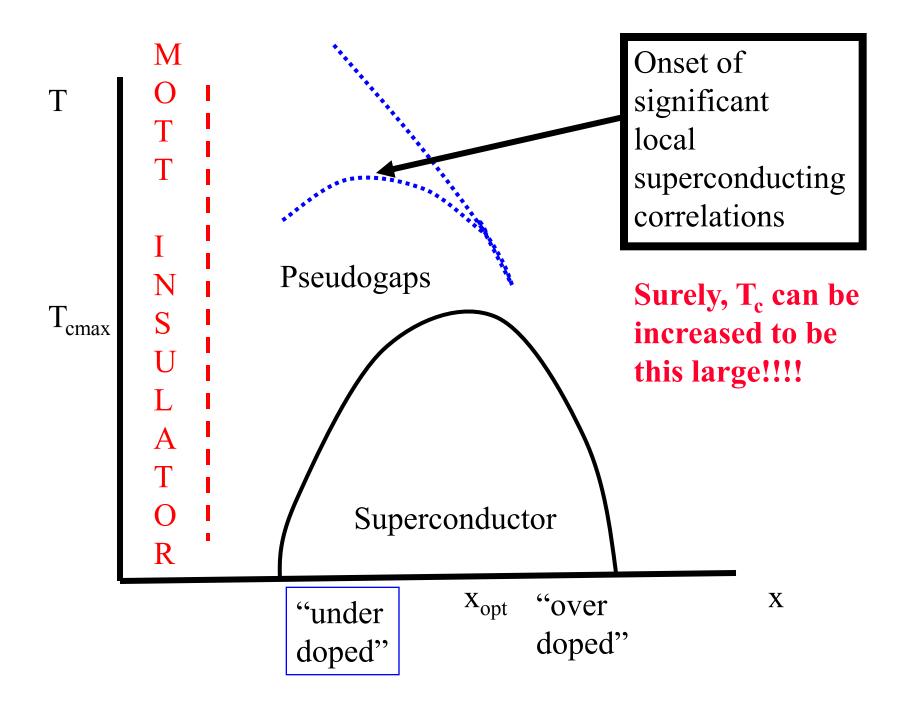
Breaking a system into meso-scale "clusters" can, under special circumstances, produce enormous enhancement of  $\Delta_0$  but always at the expense of reduced  $T_{\theta}$ , so optimal  $T_c$ occurs at an "optimal inhomogeneity."

One can use these principles to develop strategies for making high T<sub>c</sub> higher.



Pseudo-gap phenomena

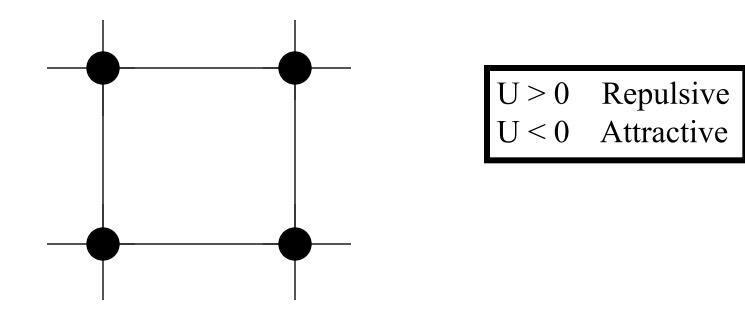




#### **Some solutions of model problems:**

 The negative U Hubbard model (Following on talk of DJS) The Hubbard model

$$H = -\sum_{ij,\sigma} t_{ij} \ c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{j} \ c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} c_{i,\downarrow} c_{j,\uparrow}$$



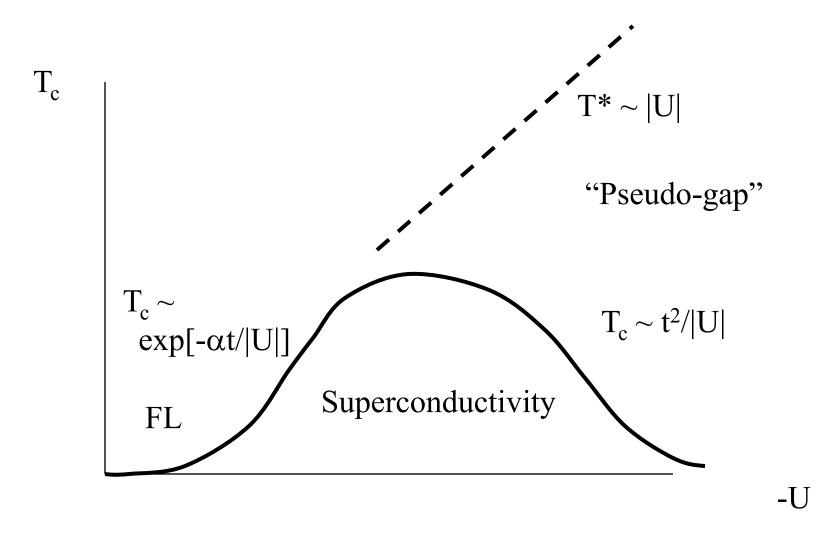
#### |U| << t BCS superconductivity

$$T_c \sim t \exp[-\alpha t/|U|]$$

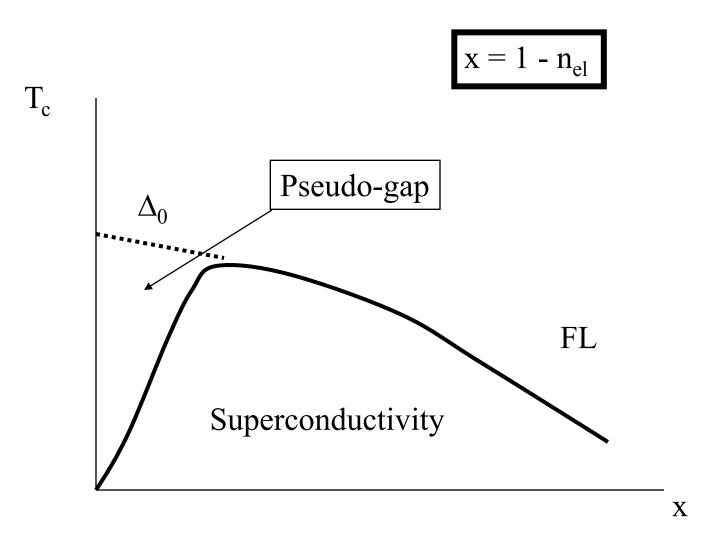
very mean-field like transition.

|U| >> t BEC superconductivity pairs form at T ~ |U| (pseudo-gap)

 $T_c \sim \rho_s \sim \ t^2 \, / \, |U|$ 



Maximal T<sub>c</sub> occurs at a point of crossover in the physics



For x small,  $T_c \sim \rho_s \sim$  condensation (phase coherence) scale. For x large,  $T_c \sim \Delta_o \sim$  pairing scale.

For small x,  $\rho_s$  is supressed due to "competing" CDW order.

#### **Some solutions of model problems:**

1) The negative U Hubbard model

2) The Holstein model (electron-phonon problem).(Also discussed by DJS.)

#### Holstein model

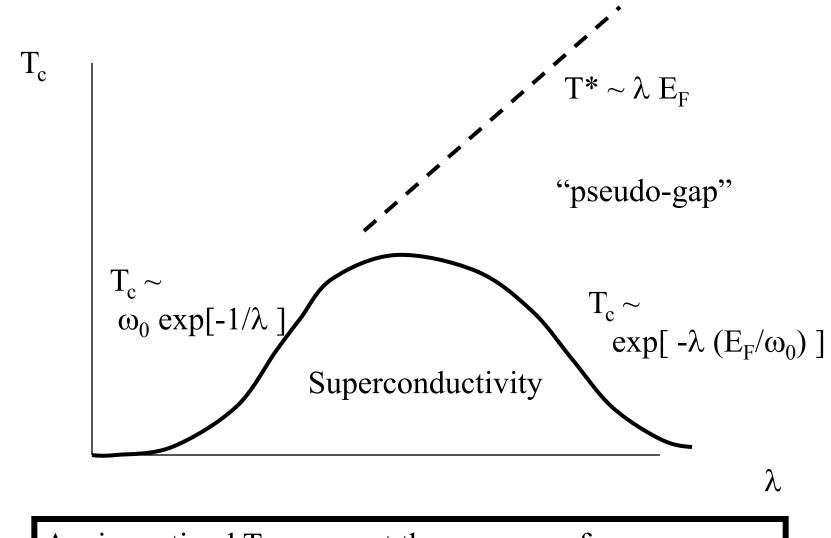
Small  $\lambda \ll 1$   $T_c \sim \omega_0 \exp[-1/\lambda]$ 

Large  $\lambda >> 1$   $T_c \sim \exp[-\lambda (E_F/\omega_0)]$ 

 $\Delta_0 \sim E_F \; \lambda$ 

"small bipolarons"

This is a breakdown of Eliashberg theory!!!



Again, optimal  $T_c$  occurs at the crossover from a pairing dominated to a condensation dominated regime.

#### **Some solutions of model problems:**

1) The negative U Hubbard model

2) The Holstein model (electron-phonon problem).

3) The inhomogeneous negative U Hubbard model (in the weak coupling limit).

# Suppose you have some (weak) attractive U's of concentration x < 1 to distribute in some way on the lattice.

If they are distributed uniformly,  $T_c \sim \exp[-\alpha t / |U_{av}|]$   $|U_{av}| = x|U| < |U|$ 

| If they are macroscopically phase separated, |     |           |  |  |  |  |
|----------------------------------------------|-----|-----------|--|--|--|--|
| $T_c \sim exp[-\alpha t /  U ]$              | and | $T_c = 0$ |  |  |  |  |

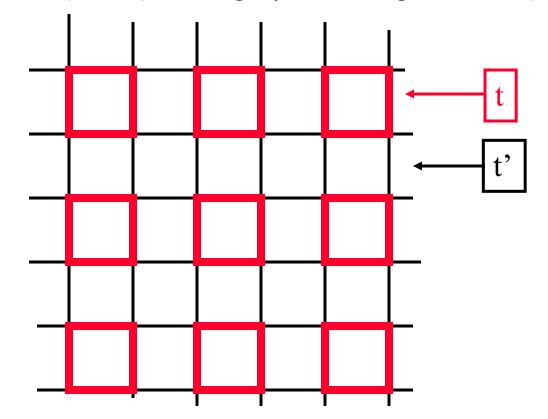
With appropriate distribution can make a spatially structured phase with "uniform"  $T_c \sim exp[-\alpha t / |U|]$ 

#### Some solutions of model problems:

- 1) The negative U Hubbard model
- 2) The Holstein model (electron-phonon problem).
- 3) The inhomogeneous negative U Hubbard model (in the weak coupling limit).
- 4) The "Checkerboard Hubbard model." (Similar, although not as complete, results pertain to the "Striped Hubbard model.")

#### Phase diagram of checkerboard Hubbard model

"Homogeneous" (t'/t=1) to "highly inhomogeneous" (t'/t << 1)

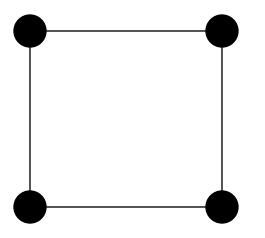


**The** Hubbard model for t = t'

The Checkerboard Hubbard model for t > t'

Repulsive U Hubbard model on 4 sites

$$H = -\sum_{\langle \mathbf{r}, \mathbf{r}' \rangle, \sigma} t_{\mathbf{r}, \mathbf{r}'} \left( c^{\dagger}_{\mathbf{r}, \sigma} c_{\mathbf{r}', \sigma} + H.c. \right) + U \sum_{\mathbf{r}} n_{\mathbf{r}, \uparrow} n_{\mathbf{r}, \downarrow},$$



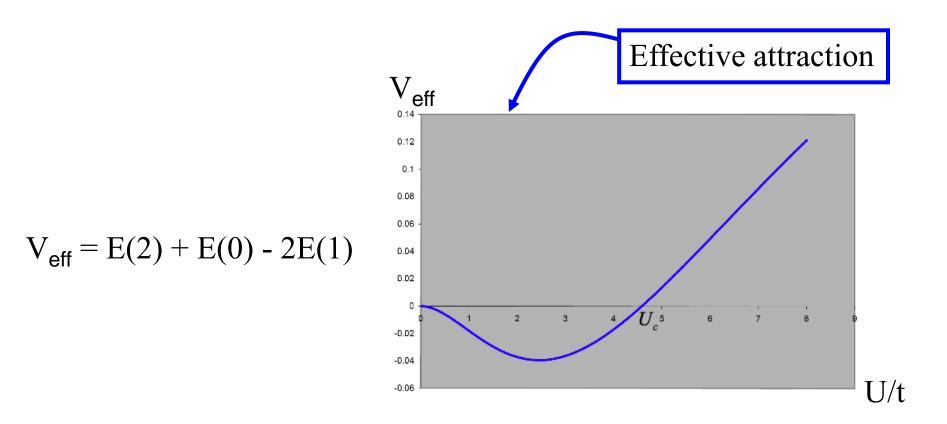
(Solution for t'=0 is direct product of solutions for isolated squares.)

#### 4 site Hubbard model

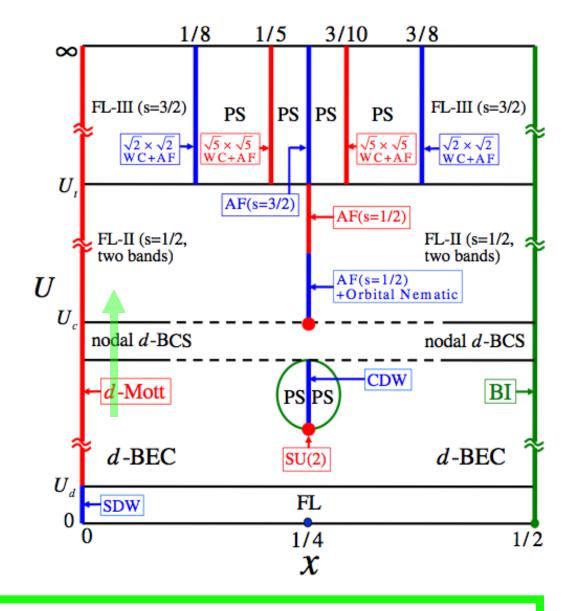
$$Q = 4 - N_{electrons} = N_{holes}$$
  $E(Q) = Ground-state energy$ 

| Q | E(Q)                                                                    | $\mathbf{S}$  | $S_z$             | symmetry        | eigenstate                                       |
|---|-------------------------------------------------------------------------|---------------|-------------------|-----------------|--------------------------------------------------|
| 0 | $\frac{\sqrt{3}U - 2\sqrt{16t^2 + U^2}\cos(\frac{\beta}{3})}{\sqrt{3}}$ | 0             | 0                 | d-wave          | $\Psi_{111}$                                     |
| 1 | $\frac{U - \sqrt{32t^2 + U^2 + 4\sqrt{64t^4 + 3t^2U^2}}}{2}$            | $\frac{1}{2}$ | $\pm \frac{1}{2}$ | $p_x \pm i p_y$ | $\Psi_{46}, \Psi_{70}$<br>$\Psi_{50}, \Psi_{74}$ |
| 2 | $\frac{U-2\sqrt{48t^2+U^2}\cos(\frac{\alpha}{3})}{3}$                   | 0             | 0                 | s-wave          | $\Psi_{22}$                                      |

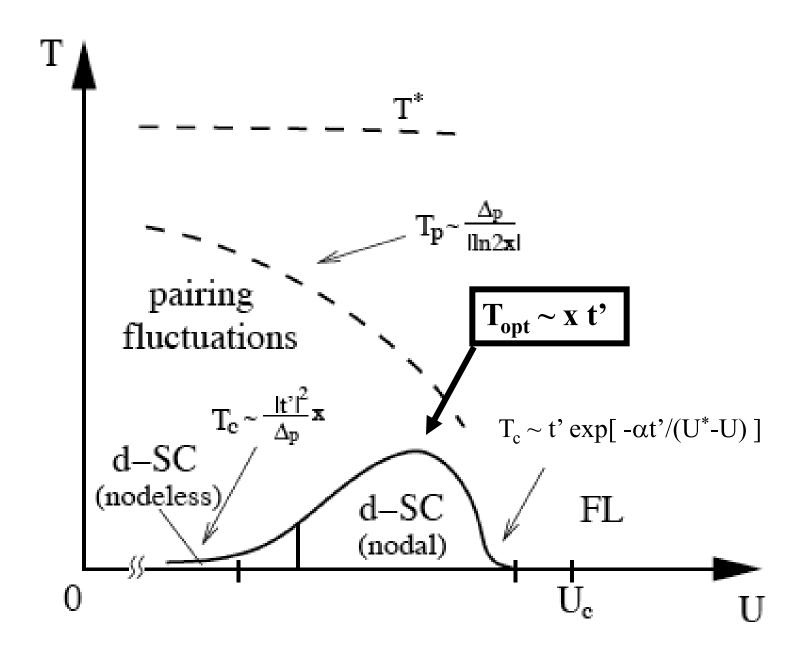
#### 4-site Hubbard model



When  $V_{eff} < 0$ , it is energetically favorable to add two holes to one square rather than one hole to each of two squares.  $U_c/t=4.58...$  Phase diagram at T=0 for checkerboard model with t' << t.



 $t'/t \ll 1$  and  $x \ll 1$  and U near  $U_c$ 



Checkerboard Hubbard model proves many points of principle.

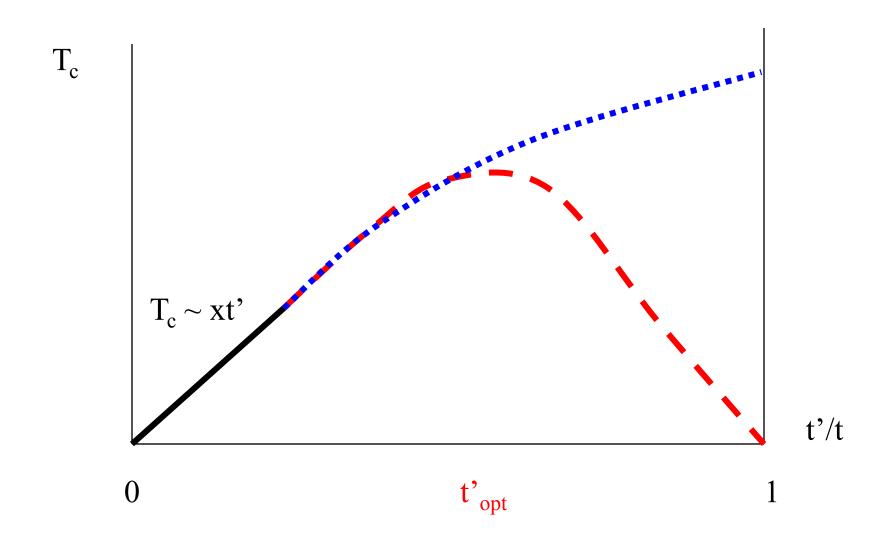
Can get superconductivity directly from strong repulsion between electrons

Highly non-BCS **mechanism** of SC - no well defined phonon (or any other well defined boson) exchanged, and no FL "normal" state.

D-wave superconductivity emerges naturally from lattice geometry and strong repulsion.

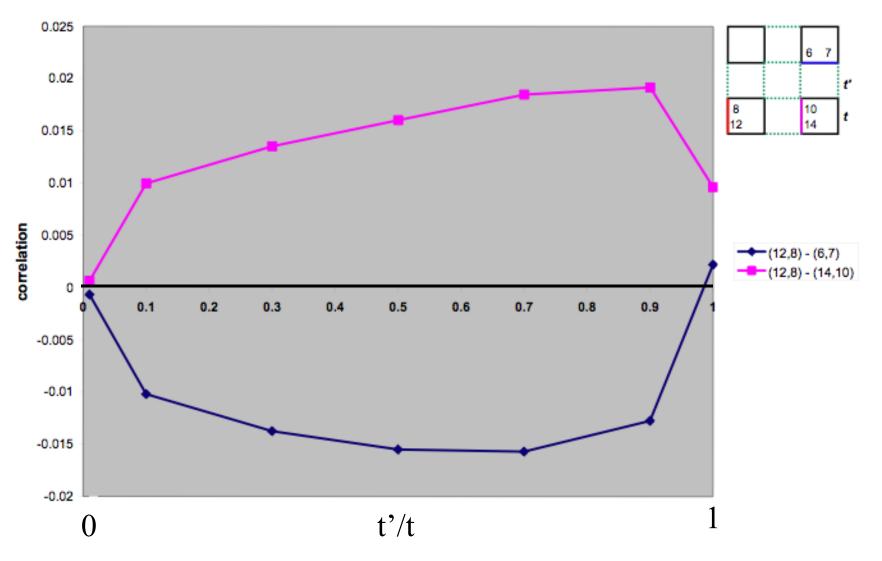
Also has a crossover from pairing to coherence at roughly T<sub>opt</sub>

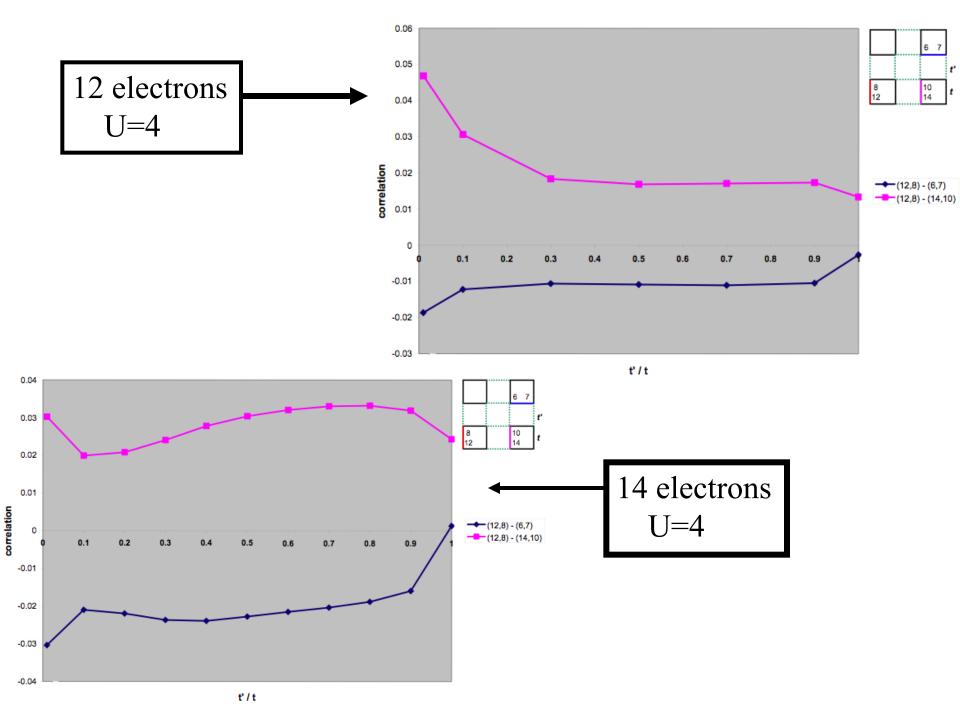
Is inhomogeneity essential?



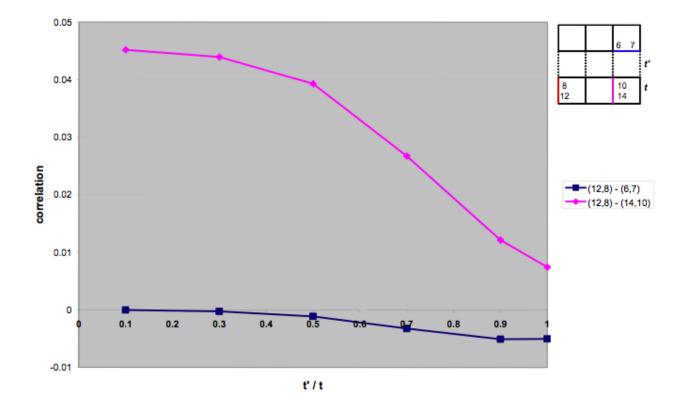
#### Equal time Pairfield-pairfield correlation function on 4x4 checkerboard

#### 14 electrons on 16 sites with U=8t

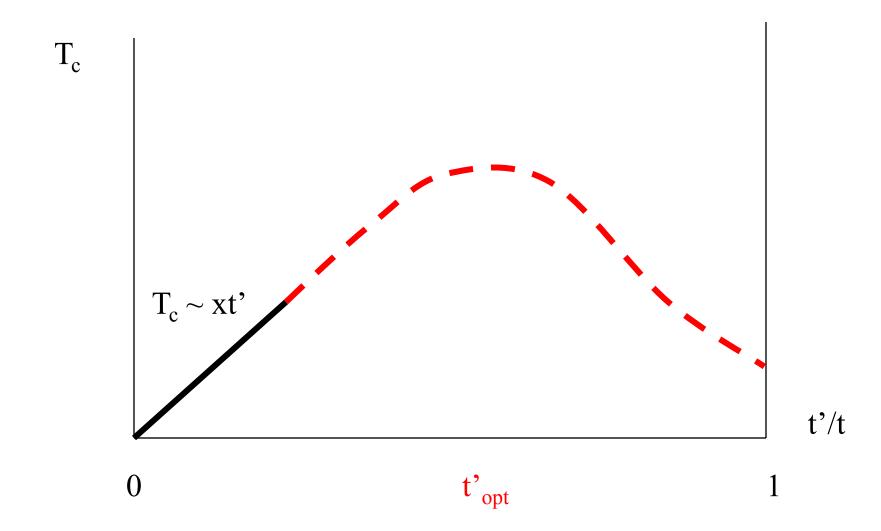




#### Two "coupled two leg ladders" U=4t 16 electrons in 16 sites



#### Probably inhomogeneity essential to optimize T<sub>c</sub>!



Maybe there is an "optimal inhomogeneity" for HTC.

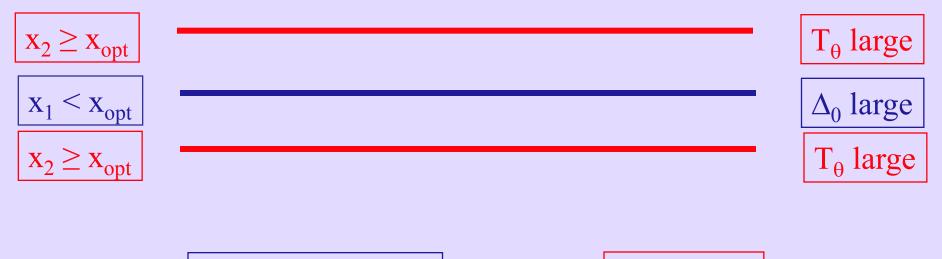
Then "stripes" may be essential - a form of self-organized inhomogeneity.

Mesoscale structure of another kind is demonstrably important  $T_c$  rises for n=1 to 2 to 3, then drops for n=4 to 5 ... (n=number of layers)

Search for ways of making inhomogeneous systems with high pairing regions and highly coherent (itinerant) regions. How to make High T<sub>c</sub> higher - a theoretical proposal Physica **B 318**, 61-67 (2002).

Suppose it is true that in underdoped cuprates,  $T_{pair} >> T_c$ .

Then, to enhance  $T_c$ , we need to enhance  $T_{\theta}$ .



 $T_{\theta} \sim \rho_s / m^*$ 

 $T_{pair} \sim T_{BCS} \sim \Delta_0/2$ 

Consider a bilayer cuprate with two inequivalent layers vary, separately,  $x_1$  and  $x_2$  to optimize  $T_c$ 

Maybe this already occurs in Y<sub>2</sub>Ba<sub>4</sub>Cu<sub>7</sub>O<sub>15</sub>

chain chain chain chain chain chain

 $T_c = 95K = 3 K$  enhancement over  $YBa_2Cu_3O_7$ 

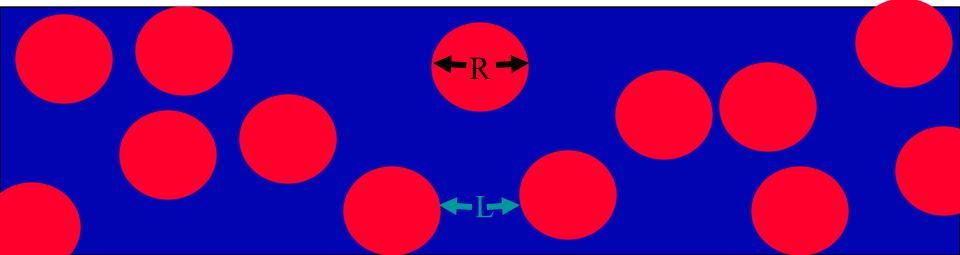
## Making an optimal high temperature superconductor from a mixture of two phases

A= strong pairing but small superfluid density (possibly both deriving from stripe order).

B= large Drude weight, but little or no pairing (possibly an overdoped metal).



$$L \sim L_T \sim v_F/T$$



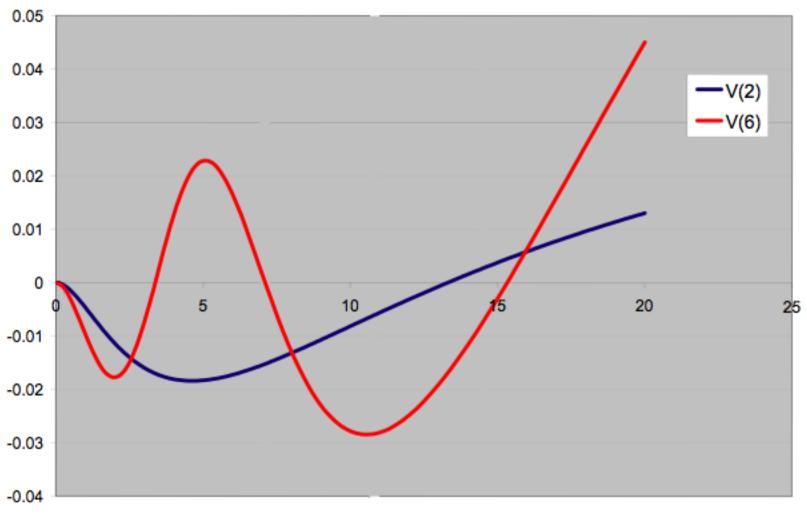
Unless the superconducting phase is cut off by a (first order) transition to a competing phase, optimal  $T_c$  occurs at a crossover from a pairing dominated regime -  $T_c \sim \Delta_0$ to a condensation regime -  $T_c \sim T_{\theta}$ 

Breaking a system into intermediate scale "clusters" can, under special circumstances, produce enormous enhancement of  $\Delta_0$  but always at the expense of reduced  $T_{\theta}$ , so optimal  $T_c$ occurs at an "optimal inhomogeneity."

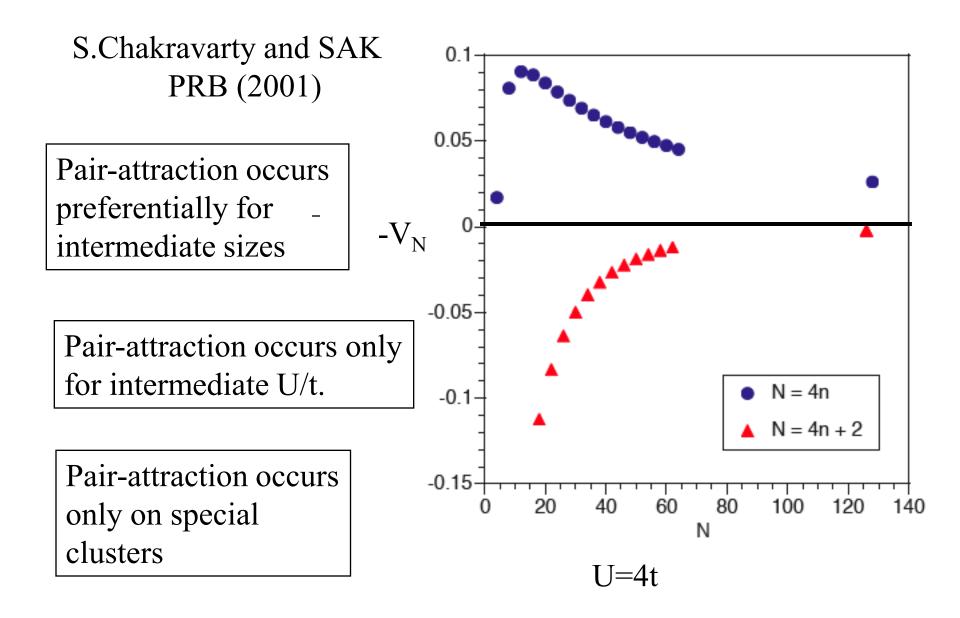
One can use these principles to develop strategies for making high T<sub>c</sub> higher.

## The end

## V(6) = E(8) + E(6) - 2E(7) V(2) = E(4) + E(2) - 2E(3) Pair binding energy for a cube



#### Pair binding energy on N membered Hubbard ring



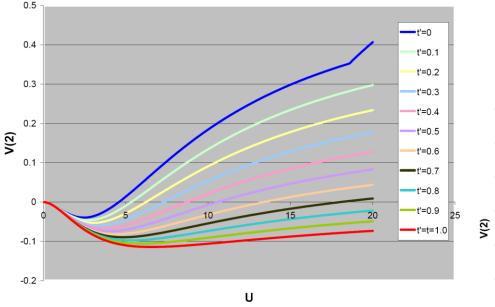
| CuO <sub>2</sub> / <sub>c</sub> | n=1               |                 | <i>n</i> =2       |                 | n3                |                 |
|---------------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
|                                 | $T_c(\mathbf{K})$ | Separations (Å) | $T_c(\mathbf{K})$ | Separations (Å) | $T_c(\mathbf{K})$ | Separations (Å) |
| LSCO-214                        | 40                | 6.6             | -                 | -               | -                 | -               |
| Hg-12( <i>n</i> -1) <i>n</i>    | 98                | 9.5             | 127               | 9.5             | 134               | 9.5             |
| Tl-12( <i>n</i> -1) <i>n</i>    | -                 |                 | 103               | -               | 133               | -               |
| Tl-22( <i>n</i> -1) <i>n</i>    | 95                | 11.5            | 118               | 11.5            | 125               | 11.5            |
| Bi-22(n-1)n                     | 38                | -               | 96                | -               | 120               | -               |
| Y123 (6 GPa)                    | -                 | -               | 95                | 7.9             | -                 | -               |
| Y124 (6 GPa)                    | -                 | -               | 105               | 9.8             | -                 | -               |

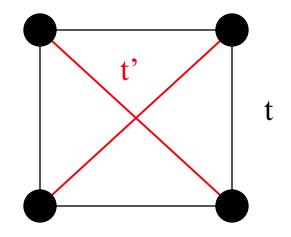
From "What can Tc teach about superconductivity?" by Geballe and Koster, cond-mat/0604026

#### More about the Hubbard square

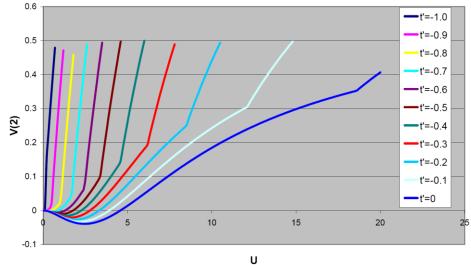
t'=t is the tetrahedron the "best" cluster we have found yet.

Pair binding energy for a square with positive t'

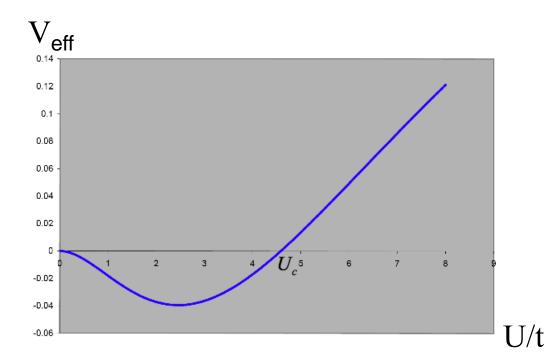




Pairing binding energy on a square with negative t'



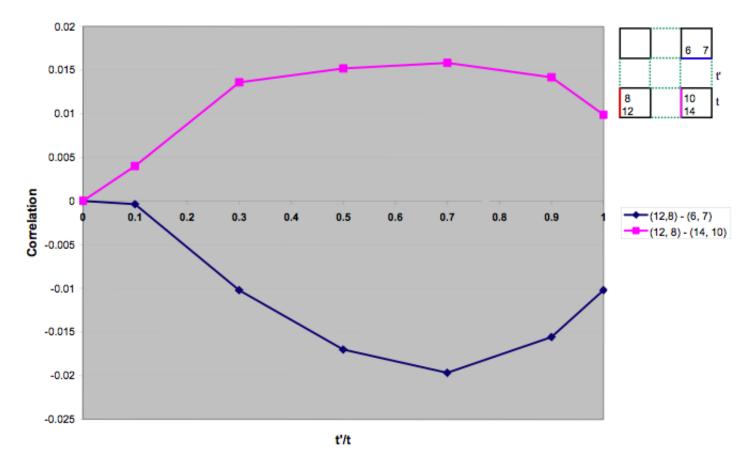
#### Four-site Hubbard



We can understand the onset of the effect using perturbation theory.

 $V_{eff} = A U - B U^2 + \dots \qquad A \ge 0 \qquad B > 0$ 

Under what circumstances is A=0?



Pair-Pair Correlation Function, Ne=16, U=2, Checkerboard