The Yellow Brick Road* to Room Temperature Superconductivity

Richard Klemm University of Central Florida Orlando, Florida, USA

*with apologies to L. Frank Baum, Noel Langley, and MGM

Forward

I agree with Chandra Varma*

*To reach the emerald city, one requires an s-wave order parameter (but there are also other requirements and/or restrictions)

I agree with Richard Feynmann*

*``When a new effect is discovered, and a highly exotic, exciting explanation and a very boring, ordinary one are both provided, the very boring, ordinary explanation is always correct.''

Principal Characters

Dorothy, the sincere, young experimenter (our hero)

D-waves: The Wicked Witch of the West

Distractions and addictions: The "p-word" Poppy Fields

Bob Schrieffer, also known as Glinda, the Good Witch of the North

The shoes of John Bardeen, also known as The ruby slippers

Competing orderings: The flying monkeys

The Ghost of John Bardeen: The Wizard "PHONONS!"

Room Temperature Superconductivity: the emerald city

The Tempest: the discovery of superconductivity

Toto, I've got a feeling we're not in Kansas anymore

Ding, Dong, the witch is dead! The BCS Theory of Superconductivity

Munchkinland: One dimension

Follow the yellow brick road!

Are you a good witch or a bad witch?

The plains of Munchkinland: two dimensions, the plot thickens...

Resistivity: 2H-TaS₂ vs. YBCO

2H-TaS₂ T_c=0.6K

 $\frac{\text{YBCO}}{\text{T}_{\text{c}} = 93\text{K}}$

Wilson, DiSavlo, Mahajan

D. Johnston

Properties at 300K

Compound ρ_{\parallel} $R_{H,\perp}$ ρ_{\perp} χ_{\perp} $10^{-4}\,\Omega\,\mathrm{cm}$ $10^{-3}\,\Omega\,\mathrm{cm}$ $10^{-7} \text{ cm}^{3}/\text{gm}$ $10^{-4} \text{ cm}^{3}/\text{C}$ $2H-TaS_2 = 1.2-1.5$ 4.8 5.7 2.2 2H-TaSe₂ 1.3 4.1 1.8 4.2 **YBCO** 0.7-1.5 4.8 4.0

Charge-Density Waves

Incommensurate and commensurate CDW's

CDW has a gap with a node

intensity (arb. units)

Rong Liu

Saddle bands (extended van Hove singularities) in 2*H*-TaSe₂

Also quasi-circular Fermi surface

CDW forms at 125K on saddle bands, with six nodes touching the circular FS (commensurate at 90K)

SS forms at 0.2K on the remaining circular FS

Intercalation!

2H-TaS₂(pyridine)_{1/2}

Tantalum disulfide and pyridine sandwich: Either two-dimensional or organic superconductivity is reported.

F. R. DiSalvo, F. R. Gamble R. A. Klemm

1970

nuo-dimensional superconductivity.

T. H. Geballe

Geballe: Meissner effect no criterion.

Bernd Matthias:

``Two-dimensional superconductivity is the snake-oil of superconductivity''

Science News, 1970

CDW removed! (poof!)

 $T_c \rightarrow 3.45 K!$

Structures of Bi2201, Bi2212, Bi2223

Pseudogap & infrared reflectance

Layered Superconductor: Bi2212 (Irie) and (HgBr₂)Bi2212 (Yurgens) Stack of Josephson junctions

 $I_cR_n=20\%$ of I_cR_nAB

Intercalation only increases anisotropy

Pb/Bi2212 c-axis Josephson junctions (Möβle & Kleiner, 1999) Fraunhofer, Shapiro analyses I_cR_n~8μV

K. M. Lang et al. Nature 415, 412 (2002).

Average stoichiometry

 $Bi_{2.15}Sr_{1.92}Ca_{0.75}Cu_2O_{8+\delta}$ Petricek *et al.* 90

 $Bi_{2.12\pm0.1}Sr_{1.79\pm0.1}Ca_{0.92\pm0.05}Cu_2O_{8+\delta}$ Gao *et al.* 93

 $Bi_{2.05\pm0.03}Sr_{1.98\pm0.01}Ca_{0.75\pm0.03}Cu_{2\pm0.04}O_{8+\delta}$ Kan & Moss 92

 $Bi_{2.1\pm0.1}Sr_{1.9\pm0.1}Ca_{1.0\pm0.1}Cu_2O_{8+\delta}$ Grebille *et al.* 96

- 6% of Bi⁺³ ions replace Sr⁺² and Ca⁺² ion site vacancies; O⁻² ions likely move in to balance charge
- Bi_{2+x}Sr_{2-x}CaCu₂O_{8+δ} Eisaki *et al.*, PRB **69**, 064512 (2004). 82.4K≤T_c(x) ≤94K with $0.2 \ge x \ge 0$. Doping by O₂ annealing. Many compositions listed in Ref. 9.
- $Bi_{2.22}Sr_{1.55}Ca_{1.17}Cu_{2.01}O_{8+\delta}$ Vedeneev & Maude PRB 72, 144519 (2005). T_c=84K Quadratic or flat DOS in break-junction tunneling. No O₂ annealing. Excess Bi ⇒UD.

Bulk, static nanodomain disorder Neutron, electron, x-ray diffraction

P. A. Miles *et al.*, Physica C 294, 275 (1998).
Y. Zhu *et al.*, Microsc. Microanal. 9, 442 (2003).

Too dirty for d-waves, scarecrow!

Nanoscale chemical and ordering disorder (CDW & SC)

CDW and superconducting orderings are in distinct nanoregions in real space, probably determined by the local chemical composition.

The "p-word"

(If you say "phonons"), I'll get you my pretty!

R. Khasanov *et al.*, PRB **68**, 220506 (2003); PRL **92**, 057602 (2004). [Y_{0.6}Pr_{0.4}Ba₂Cu₃O_{7-δ}; YBa₂Cu₃O_{7-δ}]

Y. S. Lee *et al.*, Phys. Rev. B **72**, 172511 (2005). [YBCO]

J. Lee *et al.*, Nature **442**, 546 (2006). Ω from d²I/dV² with STM

$Bi_2Sr_2CaCu_2O_{8+\delta}$ c-axis twist Josephson junctions

Qiang Li et al., Phys. Rev. Lett. 83, 4160 (1999).

Review article of the three twist experiments: RAK, Phil. Mag. **85**, 801 (2005).

C-axis twist junctions

Measurements of I_c

Y. Zhu et al. Phys. Rev. B 57, 8601 (1998)

M. A. Schofield et al., Phys. Rev. B 67, 224512 (2003)

Relative Junction Quality:

At least 10,000 times superior to all HTSC/HTSC in-plane junctions (Van Harlingen, Tsuei-Kirtley, Mannhart, Claeson, etc.)*

*see the review article by Mannhart and Hilgenkamp

Measurements of I_c^S & I_c^J

Bicrystal $J_c(T)$

Q. Li et al., Phys. Rev. Lett. 83, 4160 (1999).

Tetragonal Order Parameters

S-wave tetragonal OP's

Orthorhombic OP's: $d_{x^{2-y^2}}$ $\phi_0=0^{\circ}, I_c>0; \phi_0=90^{\circ}, I_c<0$

Latyshev et al. natural cross whiskers

Yu. I. Latyshev et al., Phys. Rev. B 70, 094517 (2004).

80°, 89° natural cross whiskers

Natural cross whisker T dependence

$I_c R$ of natural cross whiskers Mean $I_c R=7$ mV (20% of $I_c R_n AB$)

Bicrystal, natural & artificial cross whiskers

Conclusions of the three twist experiments

At least 20% s-wave at T_c (could be 100%) Incoherent c-axis tunneling All c-axis tunneling in the swave channel Bequire attractive interaction

Require attractive interaction

I'm melting!

Are we in back in Kansas yet?

Which good witches?

Optical phonons (high energy)
Anharmonic phonons (the half-breathing mode?)
High DOS (saddle bands*)
Disorder (removes flying monkeys: CDW', SDW's, magnetism, etc.)

*without compensating interaction renormalizations—M. L. Cohen

Which bad witches?

CDW's SDW's Magnetism D-waves Big U All other exotic theories*

*Feynmann's axum

High Density of States

Fermi Surface! Extended Van Hove singularities

T. Yoshida et al., Phys. Rev. B 74, 224510 (2006).

Hence, on the yellow brick road to the emerald city:

- Avoid the flying monkeys
- Water the d-witches
- Avoid the poppy fields
- Think s-wave!
- Remember what the wizard said: phonons!
- Let the good witch Glinda be your guide
- Wear the ruby slippers

``We're off to see the wizard, the wonderful wizard of oz..."

Follow the Yellow Brick Road. Follow the Yellow Brick Road.

- Follow, follow, follow, follow,
- Follow the Yellow Brick Road.
- Follow the Yellow Brick, Follow the Yellow Brick, Follow the Yellow Brick Road.
- We're off to see the Wizard, The Wonderful Wizard of Oz.
- You'll find he is a whiz of a Wiz! If ever a Wiz! there was.
- If ever oh ever a Wiz! there was The Wizard of Oz is one becoz,
- Becoz, becoz, becoz, becoz, becoz.
- Becoz of the wonderful things he does.