The Road to Room Temperature Superconductivity Loen, Norway, 17-23 june 2007

The crucial role of crystal chemistry in strongly correlated

oxides : from high Tc's to CMR's & thermoelectrics

B.Raveau CRISMAT, Univ. Caen, France

High Tc Superconductors

Bi-Sr-Ca-Cu-O

 $Bi_{2}Sr_{2}CuO_{6+\delta}$ $Bi_{2}Sr_{2}CaCu_{2}O_{6+\delta}$ $Bi_{2-x}Pb_{x}Sr_{2}Ca_{2}Cu_{3}O_{10+\delta}$

Y-Ba-Cu-O YBa₂Cu₃O₇

La-Ba-Ca-Cu-O La_{2-x}Ba_xCuO₄

TI-Ba-Ca-Cu-O

 $TI_{2}Ba_{2}CuO_{6}, TIBa_{2}CuO_{5}$ $TI_{2}Ba_{2}CaCu_{2}O_{8}, TIBa_{2}CaCu_{2}O$ $TI_{2}Ba_{2}Ca_{2}Cu_{3}O_{10}, TIBa_{2}Ca_{2}Cu_{3}O_{9}$

Hg-Ba-Ca-Cu-O HgBa₂CuO_{4+d}, HgBa₂CaCu₂O_{6+ δ} HgBa₂Ca₂Cu₃O_{8+ δ}

MIXED VALENCE Cu³⁺/Cu²⁺

Colossal Magnetoresistance CMR

$Ln_{1-x}A_{x}MnO_{3} \& Ln_{2-x}A_{1+x}Mn_{2}O_{7}$

Ln=La to Ho A=Ca, Sr, Ba, Pb

MIXED VALENCE Mn³⁺/Mn⁴⁺

Thermoelectrics : $Z = S^2 / \rho K$

MIXED VALENCE Co³⁺/ Co⁴⁺

Role of the various factors

Geometry : dimensionality of the structure

Oxygen vacancies :content & ordering

Nature of counter cations : size, ordering, electronic structure

Structural distortions - Jahn Teller effect

Charge & orbital ordering

Phase separation

Doping at A & B sites

Dimensionality :High Tc Cuprates

La₄BaCuO₅O₁₃

Metallic non superconductive S=10³-10⁴ O⁻¹ cm⁻¹ La_{2-x}Ba_xCuO₄ .a, Ba

Superconductor Tc=38K

Superconductivity requires 2D

Dimensionality :CMR & thermoelectric manganites

Dimensionality in cobaltites : MR, super cond., thermoelectricity

SrCo_{1-x}Nb_xO_{3-δ}

MR up to60 % **Requires 3D**

HoH(T)

2

$Na_{x}CoO_{2} \& y H_{2}O$

Superconductivity: Tc = 5 K

Thermoelectricity : $S = 100 \,\mu V / K$ $\rho = 10^{-4} O cm$

Require 2D

Ca3Co4O9

Thermoelectric misfit $S = +125 \,\mu V / K$ $\rho = 5 \, 10^{-3} \, O \, \text{cm}$

Requires 2D

Oxygen vacancies : order-disorder phenomena

YBa₂Cu₃O_{7-δ}

Tc decreases as δ increases

semi-ordered

Sr_{0.8}Ln_{0.2}Co_{3-δ}

disordered or modulated

Ordering of oxygen vacancies & counter cations : closely related

Ordering of O vacancies & A Cations in cuprates

Strong relations between A cation size & J.T. effect

Manganites & cobaltites : Layered Ordering of oxygen

vacancies & counter cations

Manganites : Layered ordering of counter cations

T_c =270 K

metallic Ferromagnet

La0.5Ba0.5MnO3

metallic ferromagnet

Cobaltites : Layered ordering of oxygen vacancies & A cations

A.Maignan, V.Caignaert, B.Raveau, D.Khomskii, G. Sawatzky Phys.Rev. Letter, 93,026401(2004)

Electronic structure of the A cation : « TI ³⁺ d¹⁰ »

TISr₂CaCu₂O₇

Tc (110 K) increases with respect to La_{2-x}Sr_xCaCu₂O₆ (60 K)

 $[\mathsf{TI}_{0.8}\mathsf{Ca}_{1.9}\mathsf{Co}_{0.3}][\;\mathsf{CoO}_2]_{1.65}$

S =100 μ V / K & ρ = 10⁻² O cm at 300K

S increases with respect to

 $[Ca_2CoO_3][CoO_2]_{1.62}$

Electronic structure of the counter cation : lone pair of Bi³⁺

Tc Bi 2212 >> Tc 0212

Misfit cobaltites : S(Bi) >> S(Ca) A. Maignan et al., J. Phys. Cond. Mat. 15. 2711. (2003) M. Hervieu et al., Phys. Rev. B 67, 045112, (2003)

High Tc cuprates : stripes in La_{2-x}Ba_xCuO₄

Neutron scattering : *hole doped Cu stripes alternate with undoped AFM Cu rows (spin ladders)*

Constant energy slices through the measured Scattering at 12K for different neutron energies Showing coexistence of stripes with AFM Regions & evolution from incommensurate to Commensurate ordering of the stripes

J.M.Tranquada et al Nature, 429, 534 (2004)

CMR Manganites : Stripes in Pr_{0.5}Ca_{0.5}MnO₃

Charge and Orbital Ordering Jahn Teller effect Insulating antiferromagnet

metallic ferromagnet Double Exchange Mn³⁺ 0 Mn⁴⁺

Phase Separation in Manganites

Phase Separation in High Tc cuprates : electronic « cluster glass »

STM observations in underdoped $Bi_2Sr_2Dy_{0.2}Ca_{0.8}Cu_2O_{8+\delta}$ (atomic-resolution tunneling-asymetry imaging)

« Intense spatial variations in tunneling asymmetry Occuring at the planar oygen sites ;their spatial Arrangement appears to be a Cu-O-Cu bond centered Electronic glass with 4a₀-wide electronic domains Dispersed throughout. »

Competition between locaisation of holes in an intrisic

Electronic glass and delocalisation in a simple band

Which supports the highest Tc

Y.Kohsaka et al

50 nm square R map taken at 50 V

Phase Separation in Cobaltites

Competition between ferromagnetism and spin glass in

oxygen deficient perovskites $SrCo_{1-x}M_xO_{3-\delta}M = Nb$, Ru

Magnetoresistance at low temperature

 ρ (T) curves for SrCo_{1-x}Nb_xO_{3- δ} and SrCo_{1-x}Ru_xO_{3- δ} recorded in 0 T (continuous line) and 7 T (dashed line)

Some conclusions

- Spin Glass → Nb(Ru) for Co substitution
- MR ←→ competition between FM and SG
- Nb⁵⁺(d⁰) does not participate to conduction
- Ru5+(d³) impurity band(Ru 4d hybridisation)
- $\Box \rho(Ru) < \rho (Nb)$
- Ru-band deteriorates spin scattering
- MR-Ru <MR-Nb

PERSPECTIVES

Cobaltite misfits : oxygen nonstoichiometry A cation vacancies intergrowths new A cations

Cuprate misfits : with Bi, TI, Hg

Other triangular lattices : pyrochlores delafossites etc..

Soft chemistry, nanochemistry electrochemistry, thin films

Go back to ladder cuprates using electrochemistry To change Cu valency & ladder distances

