RTS Workshop Loen, Norway,17-23 June 2007

High-*T*_c superconducting elements under very high pressures

KYOKUGEN Osaka Univ

大阪大學

Katsuya SHIMIZU

KYOKUGEN, Center for Quantum Science and Technology under Extreme Conditions

Osaka University

outline Superconductivity on the table How high can we push it up? History Tc at Mbar pressure Sc from insulator Halogen, Chalcogen Sc from metal Alkaline, Heavy alkaline Summary and future challenge

KYOKUGEN Osaka Univ. **E. A. Ekimov** al., Nature 428(2004)542.

RPS; room pressure superconductors

P = 1 bar (30)

۱H

																	²He
³ Li	⁴ Be							۶B	۶C	7N	80	۶F	¹⁰ Ne				
¹¹ Na	¹² Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	17CI	¹⁸ Ar
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	53	⁵⁴ Xe
55Cs	⁵⁶ Ba	⁵⁷ La	⁷² Hf	⁷³ Ta	74W	⁷⁵ Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac							-							-	

⁵⁸ Ce	⁵⁹ Pr	60Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	⁶⁴ Gd	65Tb	⁶⁶ Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	⁷¹ Lu
90Th	⁹¹ Pa	⁹² U	⁹³ Np	⁹⁴ Pu	95Am	96Cm	97Bk	⁹⁸ Cf	99Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

Superconducting Elements 2007

90Th

⁹¹Pa

92U

⁹³Np

⁹⁴Pu

14		P = 1 bar (30)															
	P > 1 bar (16)																² He
³ Li	⁴ Be					we	found	(6)				۶B	6C	7N	80	۶F	¹⁰ Ne
¹¹ Na	¹² Mg													¹⁵ P	¹⁶ S	17CI	¹⁸ Ar
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	⁴⁵Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	⁵² Te	53	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	⁵7La	⁷² Hf	⁷³ Ta	74W	⁷⁵ Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac															
				580-	59 P r	60Nd	61Pm	62Sm	63 ⊑ 11	64Gd	65Th	66DV	67Ho	68⊏r	69Tm	70Vh	711

⁹⁵Am ⁹⁶Cm ⁹⁷Bk ⁹⁸Cf ⁹⁹Es ¹⁰⁰Fm ¹⁰¹Md ¹⁰²No ¹⁰³Lr

KYO	KUGEN	
Osal	ka Univ.	

forgetting about "pressure"

52 elements get Sc

1H																	
																	²He
³Li	⁴ Be											۶B	۶C	7N	⁸ O	۶F	¹⁰ Ne
¹¹ Na	¹² Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	17CI	¹⁸ Ar
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	зэү	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	45Rh	⁴⁶ Pd	47Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	52 Te	53	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	72Hf	⁷³ Ta	74W	⁷⁵ Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac															

⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64Gd	65Tb	66 Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	71Lu
90Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96Cm	⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

The history in elements...

Experimental tools

Halogen, Chalcogen, Nitrogen,..., Hydrogen,...

Superconductor from insulator

S. Kometani *et al*, J. Phys. Soc. Jpn., 66 (1997) 2564. Osaka Univ. ¹⁶S 17 K at 200 GPa

³⁴Se 8 K at 150 GPa

⁵⁶Te 7.4 K at 35 GPa

superconductivity

Lighter elements; higher T_c at higher P

New data for metallic oxygen

⁸O 1.6 K at 156 GPa
¹⁶S 17 K at 200 GPa
³⁴Se 8 K at 150 GPa

⁵⁶Te 7.4 K at 35 GPa

Mizobata

Li: metal-hydrogen-like metal?

KYOKUGEN Osaka Univ.

Fine deposited electrodes enables true 4-probe method.

Lower symmetry, lower conductivity

The significant increase of ρ. κγοκυσεν Osaka Univ.

Lithium: T_c -P

Resistance measurement non-hydrostatic (no pressure medium)

Magnetization measurement hydrostatic (Helium pressure medium)

S. Deemyad and J. S. Schilling

K. Shimizu et al., Nature 419 (2002) 597.

Hydrostaticity, Structural effect, Further transition at high pressure

x-ray diffraction + resistance measurement @ SP8

SPring-8 BL10XU

4K-pulse tube refrigerator (small vibration < 5 μm)

Raman spectrometer (pressure determination)

He-gas pressure driven DAC

Deposited electrodes (Cu)

SPring-8

N 1 1946 12.7

Beveled anvil (φ100 -300μm)

Sample (Li) φ30 μm x 20 μm^t

$T_{\rm c}$ vs. Pressure and structural sequences

KYOKUGEN Osaka Univ.

Superconductivity in heavy alkaline (IIa) metals

S. Okada et al., J. Phys. Soc. Jpn. <u>65</u> (1996) 1924.

New structure in calcium at megabar pressure 50 100 pressure Ca fcc bcc Ca-IV Ca-V SC 32 20 119 **158GPa** 148 20Probst & Wittig O. Moodenbaugh & Wittig Sr fcc Il'ina *et al.* 15 Dunn & Bundy Ш. Bireckoven et al. 3.5 150 This Work $T_{c}(\mathbf{K})$ 10Ca Ba 5 75 100125 150 175 25500 P(GPa)

T. Yabuuchi et al., J. Phys. Soc. Jpn. 74 2391 (2005).

Resistance at room temperature

R. A. Stager and H. G. Drickamer, Phys. Rev. 131, 2524 (1963).

Superconductivity in Ca

T. Yabuuchi et al., J. Phys. Soc. Jpn. 75 (2006).

Osaka Univ.

Pressure dependence of $T_{\rm c}$

heavy alkaline

High T_c elements ($\equiv T_c > 10$ K) at P > 100 GPa

from metal

[P] I. Shirotani *et al.*, Phys. Rev. B <u>50</u> (1994) 16274.
[S] S. Kometani *et al.*, J. Phys. Soc. Jpn. <u>66</u> (1997) 2564.
[B] M. I. Eremets *et al.*, Science <u>293</u> (2001) 272.

[La] **V. G. Tissen**, Phys. Rev. B <u>53</u> (1996) 8238. [Li] **K. Shimizu** *et al.*, Nature <u>419</u> (2002) 597.

[V] **M. Ishizuka** *et al.*, Phys. Rev. B <u>61</u> (2000) R3823.

[Ca] **S. Okada** et al., J. Phys. Soc. Jpn. <u>65</u> (1996) 1924.

forgetting about "pressure"

52 elements get Sc

1H																	
																	²He
³Li	⁴ Be											۶B	۶C	7N	⁸ O	۶F	¹⁰ Ne
¹¹ Na	¹² Mg											¹³ AI	¹⁴ Si	¹⁵ P	¹⁶ S	17CI	¹⁸ Ar
¹⁹ K	²⁰ Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	²⁷ Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	³² Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	зэү	⁴⁰ Zr	⁴¹ Nb	⁴² Mo	⁴³ Tc	⁴⁴ Ru	45Rh	⁴⁶ Pd	47Ag	⁴⁸ Cd	⁴⁹ In	⁵⁰ Sn	⁵¹ Sb	52 Te	53	⁵⁴ Xe
⁵⁵ Cs	⁵⁶ Ba	⁵⁷ La	72Hf	⁷³ Ta	74W	⁷⁵ Re	⁷⁶ Os	⁷⁷ lr	⁷⁸ Pt	⁷⁹ Au	⁸⁰ Hg	⁸¹ TI	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
⁸⁷ Fr	⁸⁸ Ra	⁸⁹ Ac															

⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	⁶³ Eu	64Gd	65Tb	66 Dy	⁶⁷ Ho	⁶⁸ Er	⁶⁹ Tm	⁷⁰ Yb	71Lu
90Th	⁹¹ Pa	92 U	⁹³ Np	⁹⁴ Pu	⁹⁵ Am	96Cm	⁹⁷ Bk	⁹⁸ Cf	⁹⁹ Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr

Observed the highest T_c

and future

Challenging subjects

- Hydrostaticity uniaxial compression
- □ Higher P (>300 GPa)
- In situ & precise measurements (SC, +X-ray, Heat Capacity, + Thermal expansion, ···)

