Design Criteria for Warm Temperature Dielectric Superconducting dc Cables: Impact of Co-Pole Magnetic Fields

P. M. Grant	W2AGZ Technologies
W. V. Hassenzahl	Advance Energy Analysis
B. Gregory	Cable Consulting International
S. Eckroad	EPRI

Work supported under EPRI contract

8th European Conference on Applied Superconductivity Brussels, Belgium 16-20 September 2007

Session L2: Power Cables Paper 0455 11h00, Tuesday 18 September 2007

EPRI WTD Cable - 1994

EPRI/Pirelli WTD Prototype

Past WTD Cable Demonstration Specifications

Cable Project	V (kV)	I (A)	D (mm)	a (mm)	d (mm)
EPRI/Pirelli	115	2000	88.1	18.6	95
DTE Frisbie	25	2400	88.1	18.6	254
Puji Substation	35	2000	112.0	17.5	1000

Puji Substation - Kunming

Detroit - Edison (Frisbie)

Inter-Conductor Magnetic and Force Fields

$$B = \frac{\mu_0}{2\pi} \frac{I}{r}$$

Ampere's Law

 $\frac{dF}{dl} = \frac{\mu_0}{2\pi} \frac{I^2}{r}$

Lorentz Force

Co-Phase Induced ac Losses

Two Conductor Biot-Savart Equations

Field - Force Distributions

RH Conductor Field - Force Contours

Incidence Angle and Magnitude of Inter-Conductor Field and Force

$$y = \pm \sqrt{a^2 + (x - d/2)^2}$$
$$m = \pm \frac{dy}{dx} = \frac{-(x - d/2)}{y}$$
$$\hat{\mathbf{s}} = \frac{\hat{\mathbf{x}} + m\hat{\mathbf{y}}}{\sqrt{1 + m^2}}, \quad \hat{\mathbf{h}} = \frac{-m\hat{\mathbf{x}} + \hat{\mathbf{y}}}{\sqrt{1 + m^2}}$$

$$\theta = \cos^{-1} \frac{\mathbf{B} \mathbf{\hat{s}}}{|\mathbf{B}|}$$
$$F_h = \mathbf{F} \mathbf{\hat{h}}$$

Field Angle and Magnitude Incident on RH Conductor

Ic Dependence on Field Angle of Incidence for RABITS YBCO Films

Kang S, et al. 2006 Science 311 1911

Gaussian-Based Fit

$$I_{C-W}(\theta) = G_c(\theta)I_{base} + (I_c - I_{base})G_c(\theta) + (I_{ab} - I_{base})G_{ab}(\theta) ,$$

where $G_n(\theta)$ has the form
 $G_n(\theta) = \exp[-(\theta - \theta_n)^2 / 2\sigma_n^2] .$

Magnetic fields and forces between WTD cables as a function of separation

Cable Project	I (A)	d/a	B(a) (T)	B(d) (T)	B(d)/B(a)	dF/dl (g/m)
EPRI/Pirelli	2000	5.11	0.022	0.004	0.20	0.86
DTE Frisbie	2400	13.66	0.026	0.002	0.07	0.77
Puji Substation	2000	57.14	0.023	0.0004	0.02	0.08
]				
EPRI/Pirelli	10000	5.11	0.108	0.021	0.20	21.5
DTE Frisbie	10000	13.66	0.108	0.008	0.07	8.0
Puji Substation	10000	57.14	0.114	0.002	0.02	2.1
		1				
EPRI/Pirelli	25000	5.11	0.269	0.053	0.20	134.1
DTE Frisbie	25000	13.66	0.269	0.020	0.07	78.7
Puji Substation	25000	57.14	0.286	0.005	0.02	12.7

Conclusions & Homework

- Critical state effects arising from mutual co-pole magnetic fields are manageable, especially with the development of isotropically pinned Gen 2 Tapes.
- But conductor/cryostat forces management will be difficult and require novel approaches.