SuperSuburb

A Future Cryo-powered Residential Community

Paul M. Grant

Principal, W2AGZ Technologies Visiting Scholar, Stanford (2005 – 2008) EPRI Science Fellow (retired) IBM Research Staff Member, Emeritus

ICEC 22 – ICMC 2008 22 – 25 July 2008 Seoul, Korea

Novel Cryogenic Systems TH-C2-C05 Thursday, 24 June 15:15

Table II. 2005 GHE Power Requirements Based on Monthly Time Interval

Power (kW)	Electricity	Natural Gas	Total
Monthly Mean	2.16	2.84	4.99
Standard Deviation	0.24	2.39	2.39
Mean + STD	2.39	5.23	7.39
Mean - STD	1.92	0.45	2.60
Mean + STD Mean - STD	2.39	0.45	2.60

Table III. Baseline Electric Power and Energy Storage Requirements per GHE in SuperSuburb

Baseline Power (kW)	Energy Stored (kWh)	Hydrogen Mass Equivalent (kg)	Volume as Liquid (21 K, 14.7 psia) (cube edge in meters)	Volume as Gas (300 K, 2000 psia) (cube edge in meters)
5.99	6129	187	1.38	2.63

Miles/Year	DOE H ₂	H ₂ Daily Mass	SuperCable H ₂
	Mileage	Consumption	Delivery
	(kWh/mile)	(kg)	Power (kW)
30,000	0.76	1.91	2.61

Table IV. GHE Transportation Energy Consumed¹

[±] The GHE mileage estimate may be too conservative. At one time, GHE had six family vehicles. At present, there are two...one a small roadster that gets 31 mpg,

and an SUV that gets 15. The table figure reflects only the latter two vehicles. Adjustments can be made on the SuperSuburb Excel Spreadsheet.

US Households (2005)	Number of Stations (1998)	Households per Station	Turnover Rate (days)	H ₂ Mass (kg)	Liqui d "cube " (meter s)	Gas "cube" (meters)
75,000,000	187,000	401	3	2298	3.2	6.1

Table V. Number of GHEs per H_2 Station and Individual Station Capacity[§]

 ${\ensuremath{\,^{\$}}}$ The data in Table V were derived from the US Census Bureau and various retail

gas station associations. The household number is roughly that of

unattached single family dwellings nationwide. The actual number of gas stations has declined

slightly from 1998. The "turnover" rate, that is, the number of day's supply at each station, has anecdotal origins.

 Table VI.
 Baseline Electric and Hydrogen Power Needs of a "San Jose" SuperSuburb of GHEs

GHE Households	Base Electric Power (MW)	Electricity to be Stored as H ₂ (tonnes)	Base H ₂ Power (MW)	H ₂ Stations
300,000	1798	56,104	782	748

Fig. 3. The Monopole SuperCable. Note that this embodiment requires two units.

Operating Current Density, J (A/cm ²)	t _{sc} (cm)	Hydrogen Flow Rate (m/s)	D _{H2} (cm)	Maximum Magnetic Field (T)
15,000	0.05	2	17.5	0.10

HTS	C Tape Parar	neters					
Width (mm)	Thickness (mm)	Length (m)	Total No. Tapes	Tape Req'd (km)	Approx. No. Splices	Tape C/P (\$/kA×m)	HTSC Cost (M\$)
4	0.25	800	~300	~80,000	~100,000	50	591

 Table VIII.
 SuperSuburb SuperCable Monopole Minutia and Costs (See <u>SuperSuburb Excel Spreadsheet</u>)

 Table IX.
 SuperSuburb SuperCable Monopole Thermal Loss Budget Based on Specifications and Dimensions from Figs. 2-3

 and Table VII
 (All units in W/m - See SuperSuburb Excel Spreadsheet)

Radiation	Flow Friction	Addenda Loss	1.0 % Ripple	Total
0.70	0.49	0.20	0.09	1.48

Table X. SuperSuburb SuperCable Monopole Refrigeration Requirements Based on Specifications and Dimensions from Figs. 2-3, Table VII and Table IX (See <u>SuperSuburb Excel Spreadsheet</u>)

Temperature Rise (K/km)		Total Rise for 250 km SuperCable (K)		Permissible Rise Prior to Re-Cool (K)		Total Number of Cooling Stations Required	
0.045		11 1		1		11	
Station Spacing (km)	Coc Powe Station	oling er per n (kW)	Cost o Uplift	of Heat (\$/kW)	Per S Cost	tation (K\$)	Total Station Cost (M\$)
22.25		2.9		5 10		54	1.85

 Table XI. SuperSuburb SuperCable Economic Factors. Note that the Capital Equipment Costs from Tables VIII and

 X have been doubled to reflect that two monopoles are actually in service. (See SuperSuburb Excel Spreadsheet)

Cost of Electricity (\$/kWh)	Line Losses in Conventional Transmission (%)	Annual Value of Losses on 1800 MW Transmission Line (M\$)	Additional Capital Costs for HTSC and Refrigeration (M\$)	FRB Discount Rate (%)	Period for ROI (Years)
0.05	5 %	39.4	1185	5.5 %	18