

ICEC22-ICMC2008 100 YEARS OF LIQUID HELIUM July 21-25 2008

I AM NOT Radovan Karadzic!

July, 1908

Kammerlingh-Onnes

It's only been 100 years!

SuperSuburb

A Future Cryo-powered Residential Community

Paul M. Grant

Principal, W2AGZ Technologies Visiting Scholar, Stanford (2005 – 2008) EPRI Science Fellow (retired) IBM Research Staff Member, Emeritus <u>www.w2agz.com</u> <u>http://www.w2agz.com</u>

ICEC 22 – ICMC 2008 22 – 25 July 2008 Seoul, Korea

Novel Cryogenic Systems TH-C2-C05 Thursday, 24 June 15:15

Boundary Conditions

- Carbonless
 - $-No CO_2$
- Non-Eco-Invasive
 - Minimal land/ecology impact
- Off-the-table
 - Large scale renewables (wind, solar, bio)
 - Sequestration

Technology Menu

- Generation
 - HTGCR Nuclear (80%)
 - electrons
 - protons
 - PV Solar Roofs (20%)
- Transmission
 - Hydricity SuperCable
- Storage
 - Hydrogen + Hydricity Fuel Cell
- End Use Energy
 - Electricity
 - Hydrogen

SuperCity

P. M. Grant, The Industrial Physicist, October/November 2001, p. 22 P. M. Grant, The Industrial Physicist, February/March 2002, p. 22

SuperGrid

Combining Superconducting Wires Cooled with Cryogenic Hydrogen To Create a Dual-Energy Delivery Continental-Scale System

The Hydrogen Economy

- You have to make it, just like electricity
- Electricity can make H₂, and H₂ can make electricity (2H₂O ⇔ 2H₂ + O₂)
- You have to make a lot of it
- You can make it cold, 419 F (21 K)

P. M. Grant, "Hydrogen Lifts Off...with a Heavy Load," Nature 424, 129 (2003)

SuperSuburb Parameters

- Electricity for residential appliances, lighting, space conditioning and cooking
- Hydrogen for storage of electricity and personal transportation
- Off the Agenda:
 - Commercial business; shopping centers
 - Electric rail/rapid transport
 - Street lighting

California Living!

2005 GHE Energy Consumption Statistics

Energy (kWh)	Electricity	CH_4	Total
Annual Total	18894	24882	43776
Monthly Average	1575	2073	3648
Standard Deviation	174	1747	1748
Skewness	-0.15	1.51	1.69
Kurtosis	-1.57	1.88	2.42

Monthly GHE Consumption

Power (kW)	Electricity	Natural Gas	Total
Monthly Mean	2.16	2.84	4.99
Standard Deviation	0.24	2.39	2.39
Mean + STD	2.39	5.23	7.39
Mean - STD	1.92	0.45	2.60

Baseline Electric Power and Energy Storage Requirements per GHE in SuperSuburb

Baseline Power (kW)	Energy Stored (kWh)	Hydrogen Mass Equivalent (kg)	Volume as Liquid (21 K, 14.7 psia) (cube edge in meters)	Volume as Gas (300 K, 2000 psia) (cube edge in meters)
5.99	6129	187	1.38	2.63

GHE Transportation Energy Consumed

	DOE H ₂	H ₂ Daily Mass	SuperCable H ₂	
Miles/Year	Mileage	Consumption	Delivery	
	(kWh/mile)	(kg)	Power (kW)	
30,000	0.76	1.91	2.61	

Number of GHEs per H₂ Station and Individual Station Capacity

US Households (2005)	Number of Stations (1998)	Households per Station	Turnover Rate (days)	H ₂ Mass (kg)	Liquid "cube" (meter)	Gas "cube" (meters)
75,000,000	187,000	401	3	2298	3.2	6.1

Baseline Electric and Hydrogen Power Needs of a "San Jose" SuperSuburb of GHEs

GHE Households	Base Electric Power (MW)	Electricity to be Stored as H_2 (tonnes)	Base H ₂ Power (MW)	H ₂ Stations
300,000	1798	56,104	782	748

The Cryogenic Neighborhood

The CryoNet

SuperCable Physical Parameters

Operating Current Density, J (A/cm ²)	t _{SC} (cm)	Hydrogen Flow Rate (m/s)	D _{H2} (cm)	Maximum Magnetic Field (T)
15,000	0.05	2	17.5	0.10

SuperSuburb SuperCable Monopole Minutia and Costs)

HTS	SC Tape Para	meters					
Width (mm)	Thicknes s (mm)	Length (m)	Total No. Tapes	Tape Req'd (km)	Approx. No. Splices	Tape C/P (\$/kA×m)	HTSC Cost (M\$)
4	0.25	800	~300	~80,000	~100,000	50	591

SuperSuburb SuperCable Thermal Loss Budget (W/m)

Radiation	Flow Friction	Addenda Loss	1.0 % Ripple	Total
0.70	0.49	0.20	0.09	1.48

SuperSuburb SuperCable Refrigeration Requirements

Temperature Rise (K/km)		Total Rise fo 250 km SuperCable (K)	for Permiss Rise P le to Re-C (K)		sible rior Cool	Tota Cool F	l Number of ing Stations Required
0.045		11		1		11	
Station Spacing (km)	Cooling Power per Station (kW)		(Cost of Heat Uplift \$/kW)	Po Stat Co (K	er tion ost (\$)	Total Station Cost (M\$)
22.25		32.9		5	16	54	1.85

Bottom Line

SuperSuburb SuperCable Economic Factors.

Cost of Electricity (\$/kWh)	Line Losses in Conventional Transmission (%)	Annual Value of Losses on 1800 MW Transmission Line (M\$)	Additional Capital Costs for HTSC and Refrigeration (M\$)	FRB Discount Rate (%)	Period for ROI (Years)
0.05	5 %	39.4	1185	5.5 %	18

Why Build SuperSuburbs?

- Reduce carbon emissions
 - Climate impact?
 - Declining carbonaceous reserves
- Reduce ecological footprint/impact
 - Maintain open space
 - Maintain wilderness
 - No wind, solar farms, biomass, seqestration

Where to Build Them?

- Nuclear Friendly
- Growing Middle Class
- Growing Light Industry
- Visionary Culture
- Space
- Risk-taker
- Stable Economy

