From Electrons Paired

-- A Personal Journey in Superconductivity ---- IBM, EPRI, and Beyond --

> Paul M. Grant www.w2agz.com

AGING IBM PENSIONER

IBM Almaden Research Center 650 Harry Road San Jose, CA ARC Auditorium 10:30AM – 11:30AM Friday, 6 May 2011

A DFT (LDA+U) Study of the Electronic Properties of Square-Planar Coordinated Copper Monoxide Structures

Back to the Future... My IBM SJRL Day Job of the 60s and 70s... Electronic Structure Calculations

After Imada, et al, RMP 70, 1039 (1998)

Cubic Rocksalt TMOs

Direct and Reciprocal Lattices

Cubic Rocksalt Divalent TMOs		
TMO	3d Config	Properties
MnO	5	MH-CTI (5.6)
FeO	6	MH-CTI (5.9)
CoO	7	MH-CTI (6.3)
NiO	8	MH-CTI (6.5)
CuO	9 X	X Doesn't Exist!

See Imada, Fujimore, Tokura, RPM 70 (1988) Why Not?

Tenorite (Monoclinic CuO)

Can Application of DFT (LDA+U) Help Unravel the Cubic Rocksalt CuO Enigma?

...Let's see...

DFT & (LDA + U)

$$E_{\text{LDA+U}}\left[n(\mathbf{r})\right] = E_{\text{LDA}}\left[n(\mathbf{r})\right] + E_{\text{HUB}}\left[\left\{n_m^{l\sigma}\right\}\right] - E_{\text{DC}}\left[\left\{n^{l\sigma}\right\}\right]$$

• Implemented in LMTO by Anisimov, et al, JPCM 2, 3973 (1990)

- Applied to NiO, MnO, FeO, CoO and La₂CuO₄

- Plane-Wave Pseudopotential Implementation by Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
 - Applied to FeO and NiO
 - Download open-source package from http://www.pwscf.org

Proxy Structures A New Materials Science Discipline

- You want to understand the basic physics of some given system...(e.g., HTSCs)
- So try to synthesize a simple proxy...(e.g., rocksalt CuO)
- But "Mother Nature" won't "agree." (She's a woman!)
- However, you can build it in a computer and perform various "ab initio" experiments.
- And from such, numerically calculate "observables," e.g., "response functions."
- Try it out...it's lots of fun! And perhaps you'll discover something as well!

<u>Tools</u>

QUANTUM-ESPRESSO Suite of Codes

DFT (LDA+U) plus electron-phonon

Graphics by Tone Kolalj (XCrysDen)

www.quantum-espresso.org

"Dial-in" Parameters

 $G^2 = 40 Ry$ $\rho = 320 Ry$

Convergence ≤ 10⁻⁶ Ry

"Smearing" = Methfessel-Paxton

Psuedopotentials: Ultrasoft, XC = Perdew-Zunger Cu: 3d⁹4s² O: 2s²2p⁴

Hardware

3.33 GHz Intel Core i7 – 12 GB+ (Gaming Box – Home Built)

Software

Linux Kubuntu

Viva Italia!

Rocksalt CuO Band Widths U = 0 eV

Band Widths

Rocksalt CuO Fermiology (U = 0 eV) (8 Bands Combined)

Non-Magnetic (U = 0) Cubic Rocksalt CuO -- Electron-Phonon Properties --

Are There Phonons w/ High-Tc in YBCO?

Fig. 38: Pintschovius and Reichardt, in Furrer, ISBN 0-7923-5226-2

Yes -- They're There!

Harashima, et al., Physica C263, 257 (1996)

Macfarlane, Rosen, Seki, SSC 63, 831 (1987)

Copper and Oxygen Isotope Effects in La_{2-x}Sr_xCuO₄

Proto-TMO AF-II Rocksalt Unit Cell

Proto-TMO AF-II Rocksalt

The Answer(s) !

Ground State Energy vs c/a & U(ev)

t-CuO Density-of-States

<u>References</u>

The International Conference on Theoretical Physics 'Dubna-Nano2008'

Journal of Physics: Conference Series 129 (2008) 012042

doi:10.1088/1742-6596/129/1/012042

IOP Publishing

Electronic properties of rocksalt copper monoxide: A proxy structure for high temperature superconductivity

Paul M. Grant^{*}

W2AGZ Technologies

"Electronic Properties of Rocksalt Copper Monoxide,"

APS MAR09-2008-006217, P. M. Grant, Pittsburgh (2009)

PHYSICAL REVIEW B 79, 195122 (2009)

S

Tetragonal CuO: End member of the 3d transition metal monoxides

Wolter Siemons,^{1,2} Gertjan Koster,^{1,2,*} Dave H. A. Blank,¹ Robert H. Hammond,² Theodore H. Geballe,² and Malcolm R. Beasley²

The Great Quantum Conundrum

The Colossal Quantum Conundrum

Hubbard (eV)

U = 6

0.00

+0.15

-0.15

3

The Colossal Quantum Conundrum

T U~U₀ exp(- αg), $g < g^*$; 0, $g > g^*$

Somewhere in here there has to be "BCS-like" pairing!

Shakes or Spins or Both?

Are They Copacetic, Competitive...or...

... just another Conundrum?

What formalism is the HTSC analogy to Migdal-Eliashberg-McMillan?

(In other words, how do I calculate the value of the BCS gap?)

- Original Strong Coupling, Eliashberg (JETP, 1960), McMillan (PR, 1968)
- Generalized Linhard Response Function (RPA + fluctuations) *Hu and* O'Connell (PRB 1989)
- Dielectric Response Function Kirznits, Maximov, Khomskii (JLTP 1972)

McMillan Strong Coupling

(Computationally implemented by Wierzbowska, et al., cond-mat/0504077, 2006)

$$T_{c} = \frac{\Theta}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda-\mu^{*}(1+0.62\lambda)}\right].$$
(18) What's the HTSC equivalent?
$$\lambda = 2 \int \frac{d\omega \, \alpha^{2}(\omega) F(\omega)}{\omega} = \frac{N(0)(g^{2})}{M\langle\omega^{2}\rangle},$$
(23)

$$\alpha^{2}(\omega)F(\omega) = \int_{S} \frac{d^{2}p}{v_{F}} \int_{S'} \frac{d^{2}p'}{(2\pi\hbar)^{3}v_{F'}} \sum_{r} g_{pp'r} \delta(\omega - \omega_{p-p'r}) \int_{S} \frac{d^{2}p}{v_{F}}, \qquad (19)$$

where the integral $\int d^2 p$ is taken over the Fermi surface and the electron-phonon matrix elements are given by¹⁴ $q = (\hbar/2MNV_{ch} +)^{1/2} (\hbar/2)^{1/2} (\hbar/$

$$g_{pp'\nu} = (\hbar/2MNV\omega_{p'\nu})^{1/2} \mathcal{G}_{\nu}(p, p'), \qquad (20)$$

where $\mathfrak{s}_{\mathfrak{s}}(pp')$ is the electronic matrix element of the change in the crystal potential \mathfrak{U} as one atom is moved:

$$\mathcal{G}_{\nu}(pp') = \int \psi_{p}^{*}(\varepsilon_{p-p'\nu} \nabla \mathfrak{U}) \psi_{p'} d\mathbf{r}.$$
(21)

Dielectric Response Function

$$G(\mathbf{k}, i\omega_n) = 1/(i\omega_n - \xi_k)$$

$$F(\mathbf{p}, i\omega_n) = -G(\mathbf{p}, i\omega_n)G(-\mathbf{p}, -i\omega_n)T_c \sum_{\mathbf{m}} \int [d^3k/(2\pi)^3]$$

$$\times V(\mathbf{p} - \mathbf{k}, i\omega_n - i\omega_m)F(\mathbf{k}, i\omega_m)$$

$$4\pi e^2 \left[\int_{-\infty}^{\infty} dE^2 o(\mathbf{p}, E) \right]$$

$$V(\mathbf{q}, i\omega_n) = \frac{4\pi e^2}{q^2} \left[1 - \int_0^\infty \frac{dE^2 \rho(\mathbf{q}, E)}{\omega_n^2 + E^2} \right]$$

In principle, KMK can calculate the BCS gap for general "bosonic" fields, be they phonons, magnons, spin-ons, excitons, plasmons...or morons!

KMK (1972)

Bottom Line

Can studying CuO proxies with DFT + LDA+U + phonons + spins provide insight into the origins of High-T_c? I say "Yes," but... Size Matters... ...and I need a...

BIGGER COMPUTER!

Other CuO Proxy Structures

- Studies in Progress -

a = b = 3.905 Å c = 6 x 3.905 = 23.43 Å 2 CuO segments per quadrant 16 Å between tubes

-- OK...Enough Already !

-- That's all for now !

-- But Stayed Tuned...