

A Density-Functional Study of the Electronic and Magnetic Properties of Tetragonal Copper Monoxide as a Proxy for High Temperature Superconductivity

> Paul M. Grant W2AGZ Technologies www.w2agz.com

AGING IBM PENSIONER

"China/US Joint..."

~ 10,000 years

Smallylood Receivoir Mt. Katahdin Mt. Katahdin 1606 m Mt. Washington 1917 m Boston New York New York

Sea

~ 1,000 years

Zhu Jingwu

Yao Ming

Now Let's Get Started!

Tools

Everything" (that matters) Where's spin, Pauli and Darwin? Ya screwed up, **Bob!** Oh yeah, how about Maxwell, Boltzmann, Gibbs,

The crunch comes when Σ_1 with i >= 3 -> "thermodynamic limit." "Van Vleck Catastrophe (1936)"

Fermi,...and finally,

Newton's Apple.

"Size Matters !"

Extended Hubbard Hamiltonian

Qualitative Description of the Physical Properties of Antiferromagnetic Insulators

$$H = \sum_{\langle ij \rangle, \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\downarrow} n_{i\uparrow} + \frac{V}{2} \sum_{\langle ij \rangle, \sigma, s} n_{i\sigma} n_{js}$$

One-electron
"band" term
On-site "Hubbard"
double occupation
coulomb repulsion

$$kT_N \approx 4t^2 / S^2 U$$

More Later!

Charge Transfer Insulator

After Imada, et al, RMP 70, 1039 (1998)

Density Functional Theory Hohenberg – Kohn (NP Chemistry, 1998)

Kohn-Sham Equations (~1965)

 $(T + \hat{V} + V_H(n) + V_{xc}(n))\psi_i = \epsilon_i\psi_i$

with charge density $n(\mathbf{r}) = \sum f_i |\psi_i(\mathbf{r})|^2$, $i = \text{combined } \mathbf{k}$ and band index, $f_i =$ occupancy of states, and orthonormality constraints $\langle \psi_i | \psi_i \rangle = \delta_{ii}$ Now minimize self-consistently:
$$\begin{split} E[\{\psi_i\}] = \sum_i f_i \langle \psi_i | T + \hat{V} | \psi_i \rangle + E_H + E_{xc}(n) + E_{ion-ion} \\ \text{obtaining:} \end{split}$$

$$E = \sum f_i \langle \psi_i | T + \hat{V} | \psi_i \rangle + E_H + E_{xc}[n] + E_{ion-ion}$$

Looking into the future I expect that wavefunction-based and density-based theories will, in complementary ways, continue not only to give us quantitatively more accurate results, but also contribute to a better physical/chemical understanding of the electronic structure of matter. W. Kohn

$$E_{\text{LDA+U}}\left[n(\mathbf{r})\right] = E_{\text{LDA}}\left[n(\mathbf{r})\right] + E_{\text{HUB}}\left[\left\{n_m^{l\sigma}\right\}\right] - E_{\text{DC}}\left[\left\{n^{l\sigma}\right\}\right]$$

- Implemented in LMTO by Anisimov, et al, JPCM 2, 3973 (1990)
 - Applied to rock salt NiO, MnO, FeO, CoO
- Plane-Wave Pseudopotential Implementation by Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
 Applied to rock salt FeO and NiO
- But where is rock salt copper monoxide, CuO?

Copper Monoxide

Néel Temperature vs. TMO Atomic Number

Tenorite (Monoclinic CuO)

Comparison of Tenorite (111) to CuO – MgO Proxy (100)

Anthologies (CuO rs/tet fsc)

- Experimental
 - Siemons:
 - *"Tetragonal CuO: End Member of the 3d Transition Monoxides,"* Siemons, et al., PRB **79**, 195122 (2009).
- Computational
 - Grant:
 - *"Electronic Properties of Rocksalt Copper Monoxide: A Proxy Structure for High Temperature Superconductivity,"* Grant, JOP:CS **129**, 012042 (2008).
 - Franchini:
 - *"Hybrid Density-Functional Calculations of the Electronic and Magnetic Structure of Tetragonal CuO,"* Chen, et al., PRB **80**, 094527 (2009).
 - "Thickness Dependent Structural and Electronic Properties of CuO Grown on SrTiO₃(100): A Hybrid Density Functional Theory Study," Francini, et al., JOP:CM 23, 045004 (2011).
 - Cococcioni:
 - *"First Principles Study of Electronic and Structural Properties of CuO,"* Himmetoglu, et al., arXiv:1107:4399v1 (2011).
 (This is a great paper...see Acknowledgements...and estimate of T_N)
- What's Next?:
 - Geballe:
 - "Optimal T_c of Cuprates: The Role of Screening and Reservoir Layers," Raghu, et al., PRB 86, 094506 (2012).

(I suspect this model/assertion may be "DFT testable")

Cu2+ 3d Multiplet Splitting (Tetra)

a=3.905Å b=3.905Å c=5.320Å α=90.0° β=90.0° v=90.0° c/a = 1.36

Measurements (Wolter Siemons)

- 2-4 ML epi on STO
- No Fermi Edge
- No Exchange **Bias on ferro-SRO** (Tc ~ 100-150 K)

Proto-TMO AF-II Rocksalt Unit Cell

a=4.194Å b=4.194Å c=4.194Å α=90.0° β=90.0° ∨=90.0°

Fm-3m

Proto-TMO AF-II Rocksalt

"Zone-ology" of "nm_Tet-CuO"

Fig. 10. Brillouin zone of ORCF₂ lattice. Path: Γ -Y-C-D-X- Γ -Z-D₁-H-C|C₁-Z|X-H₁|H-Y|L- Γ . An example of band structure using this path is given in Fig. 34.

W. Setyawan, S. Curtarolo /Computational Materials Science 49 (2010) 299-312

Let's "Shut up and start calculating." - David Mermin, Cornell, as quoted by yours truly, (Nature 4 August 2011)

<u>Tools</u>

QUANTUM-ESPRESSO Suite of Codes

DFT (LDA+U) plus electron-phonon

Graphics by Tone Kolalj (XCrysDen)

www.quantum-espresso.org

"Dial-in" Parameters

 $G^2 = 40 \text{ Ry}$ $\rho = 320 \text{ Ry}$

Convergence $\leq 10^{-6}$ Ry

"Smearing" = Methfessel-Paxton

Psuedopotentials: Ultrasoft, XC = Perdew-Zunger Cu: 3d⁹4s² O: 2s²2p⁴

Hardware

3.33 GHz Intel Core i7 – 12 GB+

Ground State Energy vs c/a & U(ev)

t-CuO Density-of-States

First Efforts

Néel Temperature vs. TMO Atomic Number

0.00

+0.15

-0.15

6

n

U

0

The Colossal Quantum Conundrum $U \sim U_0 \{1 - (g/g^*)^2\}^{1/2}$ Т U = 3"Real Metal" Funny Metal" pseudogap" "Fermi Liquid" ā AF Memories" "SDW" "NEEL" "A-F" U = 0U = 6Superconductivity g^* "Insulator" "Conductor" g

Somewhere in here there has to be "BCS-like" pairing!

Shakes or Spins or Both?

Are They Copacetic, Competitive...or...

...just another Conundrum?

What formalism is the HTSC analogy to Migdal-Eliashberg-McMillan?

(In other words, how do I calculate the value of the BCS gap?)

- Original Strong Coupling, Eliashberg (JETP, 1960), McMillan (PR, 1968)
- Generalized Linhard Response Function (RPA + fluctuations) *Hu and O'Connell (PRB 1989)*
- Dielectric Response Function Kirznits, Maximov, Khomskii (JLTP 1972)

McMillan Strong Coupling

(Computationally implemented by Wierzbowska, et al., cond-mat/0504077, 2006)

$$T_{c} = \frac{\Theta}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda-\mu^{*}(1+0.62\lambda)}\right].$$
 (18) What's the HTSC equivalent?
$$\lambda = 2 \int \frac{d\omega \, \alpha^{2}(\omega) F(\omega)}{\omega} = \frac{N(0) \, \langle g^{2} \rangle}{M \, \langle \omega^{2} \rangle}, \qquad (23)$$

$$\alpha^{2}(\omega)F(\omega) = \int_{S} \frac{d^{2}p}{v_{F}} \int_{S'} \frac{d^{2}p'}{(2\pi\hbar)^{3}v_{F'}} \sum_{\mathbf{r}} g_{pp'\mathbf{r}}^{2}\delta(\omega-\omega_{p-p'\nu}) \int_{S} \frac{d^{2}p}{v_{F}}, \qquad (19)$$

where the integral $\int d^2p$ is taken over the Fermi surface and the electron-phonon matrix elements are given by¹⁴

$$g_{pp'\nu} = (\hbar/2MNV\omega_{p-p'\nu})^{1/2} \mathcal{G}_{\nu}(p, p'), \qquad (20)$$

where $\mathfrak{G}_{r}(pp')$ is the electronic matrix element of the change in the crystal potential \mathfrak{U} as one atom is moved:

$$\mathfrak{G}_{\nu}(pp') = \int \psi_{p}^{*}(\mathfrak{e}_{p-p'\nu} \nabla \mathfrak{U}) \psi_{p'} d\mathbf{r}.$$
(21)

Well! What do I "move?" Phonons? (Ask Alex M.)

Bednorz-Mueller Nobel Lecture

Elongation of the Octahedron Indeed, they're there!

Macfarlane, Rosen, Seki, SSC 63, 831 (1987)

Raman Spectroscopy of YBCO

More Evidence

Harashima, et al., Physica C263, 257 (1996)

Finally, T_c scales (roughly) with Θ_D

Ledbetter, Physica C 235, 1325 (1994)

The Grand(t) Summary: (EM, $\Theta_{D} \approx 440$ K, $\mu^{*} \approx 0.05$)

Conclusions

Doping per CuO (units of (e)

- Phonons can yield "credible" values of Tc in the cuprates
- Holes are better than electrons
- Can't account for higher Tc's in "1-2-3 +" layered compounds (Yet...check out Raghu, et al.)

Computers and the Study of Proxy Structures may finally resolve the mystery of High-Tc...a Future NP for someone in the audience...much younger than me!

The End

Well...almost...

Come See Me in Baltimore!

Possibilities for Observation of Quantum Transport in (RE)Ba₂Cu₃O_{7-y} Perovskites

R43.00003 2:54 PM, Wednesday, 3/20/2013 Hilton Ballroom 2

PBCO

CNT-5,0

