

2013 APS Cal/Nev Section Annual Meeting 1-2 November 2013 CSU Sonoma Rohnert Park, CA

A DFT Study of Tetragonal Rocksalt Copper Monoxide: A Proxy Structure for Understanding HTSC in the Copper Oxide Perovskites

Paul Michael Grant

W2AGZ Technologies (www.w2agz.com) APS Senior Life Fellow Fellow, Institute of Physics, United Kingdom EPRI Science Fellow (retired) IBM Research Manager, Emeritus ...etc., etc., whatever...

AGING IBM PENSIONER

The Homework Problem

Some Copper Oxide Superconductors

Néel Temperature vs. TMO Atomic Number

Tenorite (Monoclinic CuO)

-Experimental-

Comparison of Tenorite (111) to CuO – MgO Proxy (100)

Attempt Growth by MBE Forced-epi on MgO or STO Substrates

You get 5-6 monolayers of tetragonal CuO (c/a =1.36)

Siemons, et al.

-Computational-

Bob Laughlin's "Theory of Everything" (that matters)

> Where's spin, Pauli and Darwin? Ya screwed up, Bob! Oh yeah, how about Maxwell, Boltzmann, Gibbs, Fermi,...and finally, Newton's Apple.

Fhe crunch comes when Σ_I with i
>= 3 -> "thermodynamic limit."
 "Van Vleck Catastrophe (1936)"

"Size Matters !"

Extended Hubbard Hamiltonian

Qualitative Description of the Physical Properties of Antiferromagnetic Insulators

$$H = \sum_{\langle ij \rangle, \sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + U \sum_{i} n_{i\downarrow} n_{i\uparrow} + \frac{V}{2} \sum_{\langle ij \rangle, \sigma, s} n_{i\sigma} n_{js}$$

One-electron
"band" term
On-site "Hubbard"
double occupation
coulomb repulsion

$$kT_N \approx 4t^2 / S^2 U$$

More Later!

Charge Transfer Insulator

After Imada, et al, RMP 70, 1039 (1998)

Density Functional Theory Hohenberg – Kohn (NP Chemistry, 1998)

Kohn-Sham Equations (~1965)

 $(T + \hat{V} + V_H(n) + V_{xc}(n))\psi_i = \epsilon_i\psi_i$

with charge density $n(\mathbf{r}) = \sum_{i} f_{i} |\psi_{i}(\mathbf{r})|^{2}$, $i = \text{combined } \mathbf{k}$ and band index, $f_{i} = \text{occupancy of states, and orthonormality constraints } \langle \psi_{i} | \psi_{j} \rangle = \delta_{ij}$ Now minimize self-consistently:

$$E[\{\psi_i\}] = \sum_i f_i \langle \psi_i | T + \hat{V} | \psi_i \rangle + E_H + E_{xc}(n) + E_{ion-ion}$$
obtaining:

$$E = \sum f_i \langle \psi_i | T + \hat{V} | \psi_i \rangle + E_H + E_{xc}[n] + E_{ion-ion}$$

Looking into the future I expect that wavefunction-based and density-based theories will, in complementary ways, continue not only to give us quantitatively more accurate results, but also contribute to a better physical/chemical understanding of the electronic structure of matter. *W. Kohn*

So...

Let's "Shut up and start calculating."

- David Mermin, Cornell, as quoted by yours truly in, ("The Great Quantum Conundrum," Nature 4 August 2011)

"Zone-ology" of "nm_Tet-CuO"

Fig. 10. Brillouin zone of ORCF₂ lattice, Path: Γ -Y-C-D-X- Γ -Z-D₁-H-C|C₁-Z|X-H₁|H-Y|L- Γ , An example of band structure using this path is given in Fig. 34.

W. Setyawan, S. Curtarolo /Computational Materials Science 49 (2010) 299-312

Néel Temperature vs. TMO Atomic Number

+0.15

-0.15

3

The Colossal Quantum Conundrum

Somewhere in here there has to be "BCS-like" pairing!

Shakes or Spins or Both?

Are They Copacetic, Competitive...or...

... just another Conundrum?

What formalism is the HTSC analogy to Migdal-Eliashberg-McMillan?

(In other words, how do I calculate the value of the BCS gap?)

- Original Strong Coupling, Eliashberg (JETP, 1960), McMillan (PR, 1968)
- Generalized Linhard Response Function (RPA + fluctuations) *Hu and O'Connell (PRB 1989)*
- Dielectric Response Function Kirznits, Maximov, Khomskii (JLTP 1972)

McMillan Strong Coupling

(Computationally implemented by Wierzbowska, et al., cond-mat/0504077, 2006)

$$T_{c} = \frac{\Theta}{1.45} \exp\left[-\frac{1.04(1+\lambda)}{\lambda-\mu^{*}(1+0.62\lambda)}\right].$$
 (18) What's the HTSC equivalent?
$$\lambda = 2 \int \frac{d\omega \, \alpha^{2}(\omega) F(\omega)}{\omega} = \frac{N(0) \, \langle g^{2} \rangle}{M \, \langle \omega^{2} \rangle}, \quad (23)$$

$$\alpha^{2}(\omega)F(\omega) = \int_{S} \frac{d^{2}p}{v_{F}} \int_{S'} \frac{d^{2}p'}{(2\pi\hbar)^{3}v_{F'}} \sum_{r} g_{pp',r} \delta(\omega - \omega_{p-p'\nu}) \int_{S} \frac{d^{2}p}{v_{F}}, \qquad (19)$$

where the integral $\int d^2 p$ is taken over the Fermi surface and the electron-phonon matrix elements are given by¹⁴ $q_{met} = (\hbar/2MNV\omega_{-t})^{1/24} (\hbar/b')$ (20)

$$g_{pp'\nu} = (\hbar/2MNV\omega_{p'\nu})^{1/2} \mathcal{G}_{\nu}(p, p'), \qquad (20)$$

where $\mathfrak{s}_{\mathfrak{s}}(pp')$ is the electronic matrix element of the change in the crystal potential \mathfrak{U} as one atom is moved:

$$\mathfrak{G}_{\nu}(pp') = \int \psi_{p}^{*}(\mathfrak{e}_{p-p'\nu} \nabla \mathfrak{U} \psi_{p'} d\mathbf{r}.$$
(21)

What do I "move?"

Phonons?

Bednorz-Mueller Nobel Lecture

Indeed, they're there!

Macfarlane, Rosen, Seki, SSC 63, 831 (1987)

Raman Spectroscopy of YBCO

More Evidence

Harashima, et al., Physica C263, 257 (1996)

Copper and Oxygen Isotope Effects in La_{2-x}Sr_xCuO₄

Finally, T_{C} scales (roughly) with Θ_{D}

Ledbetter, Physica C 235, 1325 (1994)

Eliashberg-McMillan-Allen-Dynes $\Theta_{\rm D} \approx 440 \text{ K}, \mu^* \approx 0.05$

Holes

Note Differences in Tc Scale

Conclusions

Doping per CuO (units of –e)

- Phonons can yield "credible" values of Tc in the cuprates
- Holes are better than electrons
- Can't account for higher Tc's in "1-2-3 +" layered compounds (Yet...but stay tuned!)

Computers and the Study of Proxy Structures may finally resolve the mystery of High-Tc...a Future NP for someone in the audience...much younger than me!

The End