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Method and Means for Hypergeometric Function Calculation on an Array 
Processor 
 
       This article describes a method for efficient calculation 
in the hardware of an array processor, of those hypergeometric 
functions which are defined by successive differentiation of a seed 
function.  Examples are the Legendre functions, defined by: 
      P(lm)(z) = (1-z/2/) /m/2/ d/m/P(l)(z) over dz/m/. 
where P (z) is the l-th Legendre polynomial; the associated Laguerre 
functions, defined by: 
   L/s/(r)(Rho)  = d/s/ over d Rho/s/ L(r)(Rho). 
where L (P) is the 4-th Laguerre polynomial; and the spherical Bessel 
functions, defined by: 
    j(n) (z) = z/n/ (-1 over z d over dz) /n/ sin z over z. 
 
      The attribute which permits the utilization of an array 
processor in the calculation of such functions resides in the fact 
that the seed function can be usually represented as a polynomial 
whose general term is simply: 
    a(n) z/n/. 
with general derivative 
See Original. 
 
      Thus, if in the calculation of the seed function polynomial either by recursion 
as in the case of Legendre and Laguerre polynomials, or by economization as for 
spherical Bessel functions, one forms an appropriate array of coefficients and 
exponents, the calculation of the required hypergeometric function becomes a 
trivial shift and multiply operation of this array in hardware capable of parallel 
array operations. Often the seed function itself can be calculated via such array 
manipulations, as, for example, when we define the Legendre polynomials by 
Rodriquez' formula: See Original. 
 
      In function ALF, lines 10-12 compute the coefficients and exponents of the 
seed Legendre polynomial by recursion.  Lines 13-14 compute the required value 
of the associated Legendre function by the array manipulation algorithm 
discussed in this article. 
 
      The figure diagrammatically depicts the parallel processor architecture 
necessary for calculating hypergeometric function through application of Eqs.  (4) 
and (5).  The an, Zn, and n arrays are assumed to be previously loaded as is 
also the m-counter.  The result will be accumulated in the n array.  The n array is 
provided with a cumulative multiplier, that is, the product developed in the ith 
element is the product of i, i-1, i-2, ..., i-m + 1.  The numbers 1, 2, and 3 
emanating from the clock denote the timing sequence. 
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