Demonstration of a Pre-Commercial Long-Length HTS Cable System Operation in the Power Transmission Network

DOE Peer Review Update July 27-29, 2004 Washington, DC

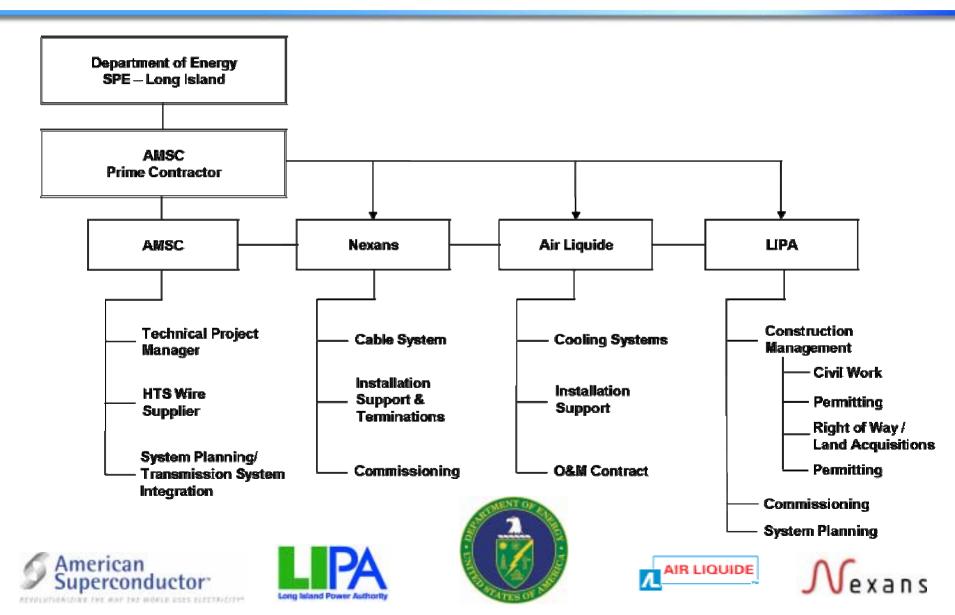
LIPA Project Overview

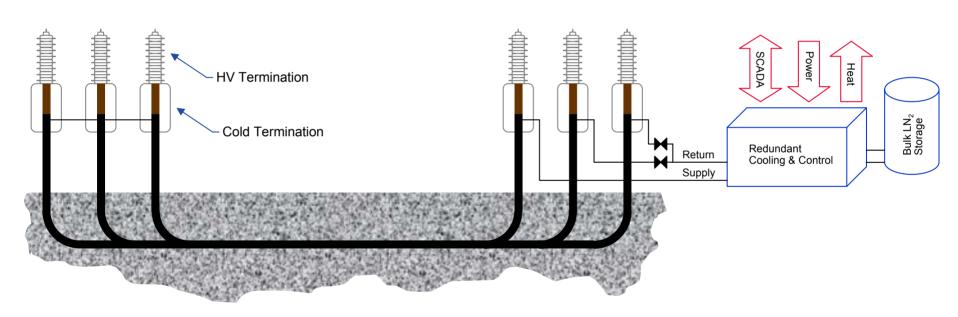
- Long Island Power Authority East Garden City Substation
- Electrical Operating Characteristics
 - Operating Voltage/Current 138kV/2400A ~ 574MVA
 - Design Fault Current 69,000A @ 15 line cycles (250ms)
- Physical Characteristics
 - Length 610m
 - HTS Conductor Length 128km
 - Cold Dielectric Design
- Hardware Deliverables
 - Three ~610 m Long Phase Conductors
 - Six 161kV Outdoor Terminations
 - One 161kV Splice (Laboratory Test)
 - No splices for grid installation required
 - One Refrigeration System + Laboratory Pulse Tube System
- Installation/Commissioning 2005-2006

World's First Installation of a Transmission Voltage HTS Cable in the World

LIPA 138 kV HTS Cable Project – Phase 1

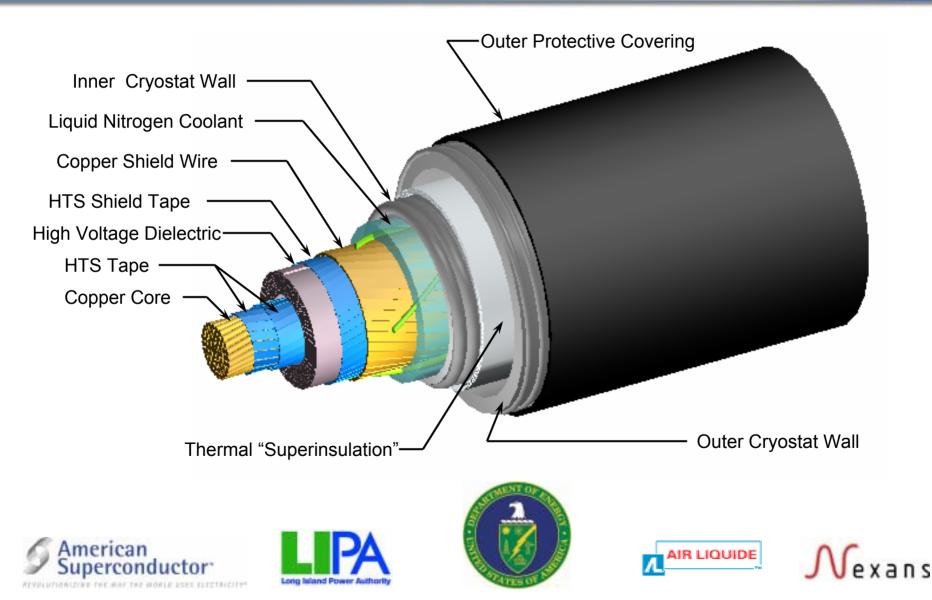
~610m 138kV 2400A HTS Cable





LIPA Cable Project and Project Team

LIPA HTS Cable System



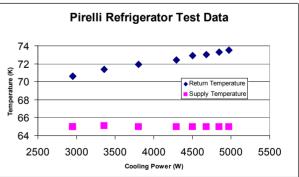
Typical Cable Cross Section

Project Status-Cable Subsystem, Nexans

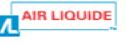
- Cable
 - Modeling complete
 - Preliminary design complete
 - Fabrication of the first of several manufacturing "dummy" cables complete
 - Data analysis underway
 - Next manufacturing trial to begin in late July
 - Component testing underway
- Terminations
 - Design complete
 - Component testing underway to verify design
 - Prototypes (2) to be built this CY

AIR LIQUIDE

Project Status-Refrigerator Subsystem, Air Liquide


- Refrigerator
 - Re-use of Detroit refrigerator from previous Pirelli SPI Cable Program
 - Upgrades to system will include improved telemetry to allow for remote monitoring and control and possible capacity upgrade
 - Will be operated 6 months prior to cable commissioning
- Advanced Refrigerator Development
 - High frequency pulse tube
 - Optimized for efficiency and temperature
 - Integrated into cooling system as "non-critical" cooling

Project Timeline


- Cable design finalized
- ~120 KM wire shipped to Nexans
- Refrigerator commissioning start
- Prototype cable testing complete
- Cable fabrication start
- Cable installation work start
- Commissioning
- On grid
- Test of joint complete
- Cable test complete

Feb '05 March '05 June '05 Sep '05 Sep '05 Dec '05/Jan '06 March/April '06 April '06 October '06 April '07

Risk Management 1/2

- Use of FMECA (Failure Mode Effect and Critical Analysis)
 - Used by Nexans Norway for estimating risks within projects
 - Formal way of risk and effect estimation
- Definition of probability classes
 - Minimum probability
 - Low probability 2 3
 - Moderate probability
 - High probability 4
- Definition of consequence figures
 - Minimum consequence
 - Moderate consequence 2
 - Serious consequence
 - Very serious consequence 4

3

- <=1 % probability
- 1-10 % probability
- 10-50 % probability
- >50 % probability

2004 Performance: Risk Management

- Use of FMECA (Failure Mode Effect and Criticality Analysis)
 - Definition of probability level (1-4)
 - Definition of consequence level (1-4)
 - Calculation of risk factor
- Initial risk estimate resulted in 29 risks
 - 11 high level risks handled through preventive actions and sometimes contingency plans
 - Low level risks handled sometimes through preventive actions and contingency plans – some of them accepted
- Risk estimate update
 - 7 risks disappeared through
 - Measurements
 - Calculations
 - Change of concept
 - 1 risk added

Consequence

1

4

3

2

2

8

6

4

2

3

12

9

6

3

4

16

12

8

4

Probability

4

3

2

1

Typical Risk Item Assessment

Tag #	Operation	Hazard	Cause	Effect	Quantity	Corrective Action (curative)	Probability	Probability Factor	Consequence	Risk Factor	Preventive Action	New Probability	New Probability Factor	New Consequence	New Risk Factor	Contingency Plan
2	Termination Design - Key Point: Connection to Cooling System	Loss of LN2 at current lead (bushing) junction	Lack of tightness of current lead (bushing)	Delay	4 - 6 months	Reorder of parts	10%	2	4	2	No use of vacuum as a dielectric	10%	2	1	2	Add security pressure
				Costs	80 k€											valve for this part
		junction cable cryostat	Lack of tightness, shrinkage of cable/cryostat	Delay	3 months	Define new connection method between cable cryostat and termination	1%	1	2	2	Johnston coupling concept from NEXANS Hannover used (validated on several cryogenic installation) - bellows included in cryostat	1%	1	1	1	Repair potential leak on site (Helium test)
		Loss of LN2 at connection with cooling system	Lack of tightness	Delay	1 month	Reorder of parts, new tests	1%	1	2	2	Johnston coupling concept from NEXANS Hannover used (validated on several cryogenic installation) - bellows included in cryostat	1%	1	1	1	Repair potential leak on site (helium test)

Conclusions

- Project is proceeding smoothly
- Modeling and analysis mostly completed
- Manufacturing trials underway
- Proven refrigeration system
- Earned value analysis shows project tracking to schedule and budget

