THEORY OF SUPERCONDUCTING STATE

important quantity in these calculations is, of course,
the entropy. There is practically no experimental
knowledge of its variation at the high energies here
involved and the free particle model was used rather
arbitrarily in the calculations.

Further experiments will be needed to fully justify
the Li® production processes here advanced. For ex-
ample, additional Li® cross sections for elements in the
neighborhood of neon could verify the transition be-
tween the “residue” and evaporation reactions. Also
more accurate and detailed excitation functions with
light elements near the threshold should exhibit ir-
regular features due to the fact that Li® can be reached
from the compound nucleus by several alternate routes.
These various routes will compete as they become
energetically possible. For example, energetically Li®
can be reached from C'? plus a proton most cheaply by
emission of He® and two protons, more expensively by
emission of a deuteron and three protons, and most
expensively by emission of four protons and one neutron.

The production of Li® in nitrogen, a good cloud-
chamber gas, may make it possible to test the con-
servation of momentum in the beta-decay of Li® more
successfully than hitherto if the background difficulties
can be circumvented.

The author wishes to thank Mr. C. Wiegand for a

150
135}
100} 4
N
13
[4
:
°
x
Al
sof i
L I I !
20 40 €0 80 100 120 140

F1G. 13. Variation of the Li8 cross section for 190-Mev deuterons
as a function of 4.

number of helpful suggestions during the course of the
experiment and Mr. T. Thompson for help during the
cyclotron bombardments. He is indebted to Professors
R. Serber and G. Wick for discussions on the applica-
bility of the evaporation formula to this case. It is a
pleasure to acknowledge the stimulating guidance
throughout the whole course of the investigation of
Professor E. Segré, who originally suggested this
problem.

PHYSICAL REVIEW VOLUME

79,

NUMBER 5 SEPTEMBER 1, 1950

Theory of the Superconducting State. I. The Ground State at the Absolute
Zero of Temperature

H. FroOHLICH*
Department of Theoretical Physics, University of Liver pool, Liver pool, England

(Received May 16, 1950)

In Bloch’s theory of electronic conductivity the scattering of
electrons by lattice vibrations is connected with the absorption
or emission of vibrational quanta. As in field theories this gives
rise to a self-energy which can be calculated by application of
perturbation theory. The most interesting term as a result of the
Pauli principle has the form of an interaction between electrons
in momentum (k) space. The interaction between two electrons
whose energy difference is small compared with their energy has
a most interesting angular dependence. Roughly speaking, it is
repulsive for equal energies but different directions of k, and
attractive otherwise. If strong enough it leads in the ground state
to a distribution in momentum space which is different from the
normal (Fermi) distribution. If this is the case then excited states
exist in which some (AZ) electrons in view of their interaction in
momentum space are concentrated in a narrow region in k-space.
These states are stable in the sense that it requires energy to

I. INTRODUCTION

N the theory of the electric conductivity of metals
first developed by Bloch! electrons are considered
*On leave at Department of Physics, Purdue University,

Lafayette, Indiana.
LF. Bloch, Zeits. . Physik 52, 555 (1928).

remove one of the electrons. Their energies are higher than the
ground state by a term proportional to (AZ)2.

The condition that the above-mentioned ground state (identified
with the superconducting state) is realized requires that the inter-
action between electrons and lattice vibrations exceeds a certain
value. With the help of the theory of high temperature conduc-
tivity, this condition can be expressed in terms of the resistivity p
at 0°C. It is found that pns*3 (1/n=atomic volume; »=number of
free electrons per atom) must exceed a value depending on uni-
versal constants only. If »=1 is assumed, all monovalent metals
except lithium do not satisfy the required condition, but most
superconductors do. The energy difference between the normal and
the superconducting state at absolute zero is about ms? (s= veloc-
ity of sound) per electron. It has thus the correct magnitude cor-
responding to a temperature of a fraction of a degree absolute.
No application to higher temperatures or to the influence of
external fields has been made yet.

to move freely through the lattice except for occasional
scattering by the lattice vibrations. This scattering is
connected with the absorption or emission of a vibra-
tional quantum. Anyone who is familiar with modern
field theories will conclude at once that an electron
will have a self-energy in this vibrational field since it
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produces a lattice deformation which in turn reacts on
the electron. In polar lattices this self-energy has re-
cently been calculated with the use of the methods of
field theory;? it arises from the interaction of the elec-
tron with the lattice polarization produced by the
electron itself. In metals it will be necessary to consider
all of the electrons together. It will be shown presently
that through the influence of the Pauli principle the
interaction energy between the electrons and the vibra-
tional field depends on their distribution in momentum
space, and if the interaction is strong enough it will be
seen to lead to a new distribution which—subject to
later confirmation—will be identified with the super-
conducting state. One should then expect the velocity
of sound to play an important role, and it is not acci-
dental that the energy of an electron moving with the
velocity of sound is of a similar order as the energy
per electron involved in the transition between the
normal and the superconducting state. Nor is it acci-
dental that very good conductors do not become
superconductors, for the required relatively strong
interaction between electrons and lattice vibrations
gives rise to large normal resistivity.

In the following the properties at the absolute zero
of temperature only will be considered; the extension
to higher temperatures and to the presence of external
fields will be made later.

II. INTERACTION BETWEEN ELECTRONS AND
THE VIBRATIONAL FIELD

In the absence of interaction with the vibrational
field the electrons will be considered as free. A one-elec-
tron wave function is then a plane wave whose wave
vector will be denoted by k (or sometimes by q). The
corresponding energy is ex=#%%%%/2m (m=electronic
mass, 2r/=Planck constant). In the lowest state these
electrons fill a sphere in k-space of radius k, where

247k /3(27)%) = Akt /3(27)2= a1, 2.1)

Here 7., is the number of electrons per unit volume. Use
has been made of the condition that the number of
one-electron states is 1/(27)* times the volume in
k-space, and that each state can be occupied by two
electrons (spin). It is well known that the Fermi energy

¢=Nhke®/2m (2.2)

has the magnitude 10 ev.

The vibrational field will also be described in terms
of plane waves whose wave number be w. The corre-
sponding energy is Aws where the velocity of sound, s,
is considered to be independent of w. We shall be
interested in longitudinal waves only, since transverse
waves do not interact with the electrons. In Debye’s
approximation the maximum value of w, denoted by w,
satisfies the relation

2we3/3(27)2=n,
2 Frohlich, Pelzer, and Zienau, Phil. Mag. 41, 221 (1950).

(2.3)
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where » is the number of atoms per unit volume. The
temperature ; given by

K6,= hwos (2.4)

(K =Boltzmann constant) is the Debye temperature if
the velocity of sound of longitudinal and transverse
waves Is assumed to be equal.

A number of quantities derived from combinations of
electronic and of vibrational terms will be of importance.
They are the number of electrons per atom,

v="nq/n,

2.5)

the wave number of an electron moving with the
velocity of sound,
oco=ms/h, (2.6)

and the ratio
oo’/ ke*=ms*/2¢ = (2%1/8)(K6,/¢)?,

of which the order of magnitude is 1075,

The interaction between the electrons and the vibra-
tional field is completely determined by the matrix
elements M, for the absorption or emission of a vibra-
tional quantum by an electron. They have been cal-
culated by Bloch! in terms of an interaction constant C.
In Bethe’s notation?

31, (4C2hw) P )
" \onvus (l+nw '

Here 7, is the number of quanta with wave number w.
At absolute zero, #,=0; V is the volume and M is the
atomic mass. The two possibilities refer to absorption
(e« n,) and emission of a quantum respectively. Con-
serving momentum the electron makes then a transition
into the state k+w or k—w.

The interaction constant C has the dimension of an
energy and is of the order of 10 ev, similar to ¢{. Its
magnitude is of fundamental importance for the fol-
lowing. As it appears only in the ratio C?/M, it is con-
venient to define a dimensionless constant of the order
of magnitude of unity,

F=C/(3tMs2). (2.9)

It will be found later that the exact value of this
constant decides whether a metal becomes supercon-
ducting.

If the interaction is now treated as a small quantity,
perturbation theory leads in second order to a change
E in energy. From a formal point of view this energy
can be attributed to the virtual emission and re-ab-
sorption of vibrational quanta, just as in radiation
theory. Thus an electron in a state k absorbs a quantum
hws and is transferred into an intermediate state with
wave vector

2.7

(2.8)

(2.10)

from which it is re-absorbed into the original state. To
satisfy the Pauli principle the transition must be pro-

3 A. Sommerfeld and H. Bethe, Handbuch der Physik 24/2, 517
(1933).

q=k—w
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portional to the probability fx(<1) that the state k is
occupied, as well as to the probability (1—fq) that
state q is empty. Thus by a well-known formula

| M A1~ f2)

=—=222 (2.11)
k w  e— et hsw
or using (2.8), (2.9), and (2.6)
16F¢a, wfi(1— fa)
=— . (2.12)

nV x w ¢*—kHow

The sums go over all values of k and w and are prac-
tically integrals. The factor 2 in (2.11) accounts for the
two spin systems which can be treated independently.

The energy can be written as the sum of two terms,

16F§‘0’0 wfk
E1= - y (213)
nV x w ¢—kHow
and L6F fuf
Cao Wikfa
E,=+ . (2.14)
nV x w@—k4ow

Calculation of the energy E; is simple and will be
published on another occasion. This energy term is
uninteresting from our point of view as it can be con-
sidered as simply giving rise to a small shift of the elec-
tronic energy levels. Its magnitude is of the order
¢ao/ke>=1073¢ per electron.

The second energy term, however, E, has very
interesting features. It will be noticed that q=k—w
may be introduced as summation index instead of w
so that there is complete symmetry in k and q, since
w=|q—k|. Then since

Jufaw
k q q2—k2+00’w

fqu”w
k2—q2+¢row,

=22
k q
we find

8F¢ay w w

frfa

¢—k4ow ¢*—k*—ow

fqu'w2
=— . (2.15)
‘2;:' % (,Iz_kz)z_aozwz

From a formal point of view each term in this sum can
be considered as representing an interaction between
two points k and q in k-space, occupied with densities
fe and fq, respectively. This interaction energy is
positive when (¢?>—%?)? is small but it is negative when
this quantity is large. It tends to make ¢—£k of the
order ao.

The purpose of the following section will be to find
a distribution fi such that the total energy of our
system has its smallest value. This will be done by
starting with the distribution function f, which mini-
mizes the total energy in zero order (sphere of radius &)
and then introduce small alterations.

847

Clearly such alterations will take place near the
surface of the distribution only. Therefore instead of k
and q we shall frequently use the coordinates

together with the polar angles 6y, 6, and the azimuths
¥k, ¢g. Then
fo(x)=1 if —ky<x<0, (2.17)

and fo(x)=0 otherwise. Also an alteration f(x) in the
distribution will be defined by

fk=f0(x)+f(x, ok; ‘Pk); f(x>20 if xZO)
fx)<0 if <0,

2 f(x)=0.
k

For simplicity we shall often write f(x) for f(x, 6, ¢x)
but by this do not wish to imply necessarily inde-
pendence of 6, and ¢i. The range of x within which f(x)
is different from zero must be very small compared
with k. The quantity x/k, will therefore be treated as
small of the order ¢o/ky>=102. Then in good approxima-
tion using (2.16) and (2.10),

P—E=2k(y—x), w?=4k?sin29/2, (2.20)

where § is the angle between q and k. Furthermore, in
calculating the change of E, energy caused by rear-
rangement in k-space we have to replace fifq in (2.15)
by (use (2.18))

Jefa=fo(R) fo(@) = fo(®) f(3)+ fo() f(x)+ f(%) f(). (2.21)

The change .S per unit volume of the total energy
due to a rearrangement of the lowest zero order con-
figuration in k-space (Fermi distribution) is then the
sum of three terms

(2.18)

where
(2.19)

S=51+S2+S3 (2.22)
where
16F¢
Si=— 2T fo@)flx,y)  (2.23)
3%V2 k q
and
16F¢
Sy=— 2 X @y (2.24)
V2 k 4
represent the change of E; per unit volume. There
200? sin0/2
Y(x, )= (2.25)

(y—x)*—0p? sin20/2.
Use has been made of (2.15), (2.20), (2.21) and of the

symmetry in « and y. S; represents the change per unit
volume in zero order energy. Treating again x/ko as
small and applying Egs. (2.16), (2.18), (2.19) and (2.2)
we have (factor 2 for spin)

Ss=(2/V)(*/2m) 2 B2/ (%) = (48/ Vo) L 2f (). (2.26)

The function [—y¢(x, y)] plays the role of an inter-
action between two electrons in k-space. It has a re-
markable angular dependence: It is positive (repulsive
in k-space) if sin?0/2>(y—x)*/os® and negative (at-
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Fic. 1. (a) The energy
required to remove an
electron from the surface
of a normal f, distribu-
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tractive) otherwise. This tends to concentrate electrons
into similar direction of motion provided (y—x)*<a¢®.

Before evaluating the above expressions a word
should be said about the use of perturbation theory. The
denominator in the sums in equation (2.12) will vanish
for certain values of q and k. Integration can, however,
always be carried out if principal values are used, and
the final expressions converge. A vanishing denominator
means that in zero order of approximation a transition
into a different fy distribution would be possible from
an energetic point of view. Taking the energy in second
order, however, these transitions are excluded ener-
getically for the distribution with the lowest energy.
For this case perturbation theory should be expected to
yield reasonably good results. The same should be
expected of metastable fi distributions where no energy
can be gained by shifting a few electrons only into dif-
ferent k-values.

III. INTEGRATIONS

In the present section the integrations required for
the calculation of the energy will be carried out, but all
essential discussions of the consequences are left to the
next section. Since all important contributions to ex-
pressions (2.23) and (2.24) come from very small x- and
y-values we can use the approximation Adk= kdk.
Hence the transformation from sum to integral is

k

-} =[Vk02/(27r)3]fdxd cosbder{---}. (3.1)

In expression (2.23) for S, where fo(x) is independent
of 8, and ¢ one can use q as axis if the k-integration is
carried out first. Then with

u=gq sinf/2, (3.2)

one finds (see (2.25))
£ U= [0V (2] f dx f pudu. (3.3)

Since 6 is the angle between k and q=k—w the upper
limit o is ¢ if wo> 2ky. Usually, however, 2k,>w, and
the range of 6 has then to be restricted so that
o=aowo/ 2k, or using (2.1), (2.3) and (2.5)

oot/ =4na/n=4v, if (4v>1);

. (3.4)
oo’/a*=1 otherwise,

o—-———
[
91>: ;

tion (c—L). (b) The
same for the f; distri-
bution (). Occupied
x-values are indicated
by shading.

b)

Normally this would influence the limits in the radial
integrations, but in our case of a very small range the
effect of this is negligible. Then with the use of* (2.25)

fdxf :/zudu——f dxf

(y—2)*—u’
4 o
—f[ 24 (y—x) ln(l—(y—x)

., )

! 2 3 o
=3[0 2+ (x—7y) ln(l—(y—x)z)
E—y—oP
—d*ln Y z] , (3.5)
x—yt+oliee

if =0 and a= —ko(—— ) are used. Thus

2uldu

ko?Vo?

.2 L fG),

2m)200% M

- f(y)%l fo(x)y= G (3.6)

where

1 a? +o
L(y)=—{2+2’3—ln(1———)+ln(y————)}. 3.7
3le ot y? y—o

It follows from (2.23) that —L(y) gives the y-de-
pendence of the interaction energy when removing an
electron a distance y from the %, surface. From Fig. 1a
it is seen to be negative, thus tending to expel electrons
from the surface. We shall therefore now calculate the
change S of energy when all electrons in the shell
between x= —a and x=0 are moved outward into the
shell between x=0 and x= g, as shown in Fig. 2a. Thus

f@)=—1 if —a<x<L0; f(x)=1 if 0Lx<a. (3.8)
It will be noticed then that

f: wf(x)dx=(— f_ i+ f a)m
=( fo t fo _a):,'/dx (3.9)

4 Absolute values of the arguments of the logarithmic function
are always to be used.
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holds. Since the angular integration can be carried out
as for S, we require again the integral (3.5) but with
the limits « and B as indicated by (3.9). Thus from
(2.24), similar to (3.6), we require

2

Ty I (3.10)

27)2 0¢? «

1
——Z X fy=+
2 q k

where

1 (y—a)?

0.2
ln(l— )
a® (y—a)?

ﬂw=ﬂ

1 (y+a)? o’ 1 (y+o)—a?
- ln(l— )——ln
2 4 Oo+a?/ 2 (y—o)—a?
a? y+o
+y31n(1—-——)-|—ln(—-—) . (3.11)
y: y—o

Angular integration in the now remaining g-integration
yields 4w, as there are no angular dependent terms left.
Then with the help of (3.1) and with (3.8) and (3.6),

T T f0) (e
=—%%Wﬂhﬂ%%ﬁfD@%Jmﬁﬂo@m

with the same integration limits as in (3.9). The value
of this integral is

P(s)=%[%s+% ln(1— 48— In(1— &

1y 1 1
+4¢ 111(1——)-——52 In(l——)
4g/ 2 £

14+2v/E1-v/
2/
1-20/E14+4/¢

£=a%/o%

I, (3.13)

(3.14)

where

X

Fic. 2. (a) Distri-
bution of electrons of
a superconductor in
k-space, ground state.

=

849

Hence by inserting (3.12) into (2.23) and (2.24)
16F¢ f 2ke?
2 ( (21r)2)
Integration of expression (2.26) for S; is straightforward
using (3.8). It yields

Sy= (45/ko) 2ks*/ (27)*)0%%. (3.16)

By making use of Egs. (2.1), (3.4), and (2.7) we obtain
the total energy S from (2.22), (3.15) and (3.16), (per
unit volume)

20.4

—P(%).

0'02

51+Sz= -

(3.15)

3n

msn

3 ¢
S=S(8)=- —— [~ F(4)P(5)+ £]

2 i

[=3ms*na(—4vFP(£)+§), if 4»<1]. (3.17)

From Fig. 3 it will be seen that S;+.S; « — P(£) has
a minimum at {=§,, with

[12)
or —=14/0.3>~0.55.

[

£=0.3, (3.18)

Also since P(¥)=¢ if £«0.3, the total energy has a
minimum only if

A»)iF>1; [4F>1, if 4v<1].  (3.19)

If this important condition is fulfilled then the dis-
tribution (Fig. 2a)

S1@)=fo(®)+f(x)

has a lower energy than the fo(x) distribution.

We shall now calculate the energy required to remove
an electron from the fi(x) distribution. This implies
replacement of fy(x) in (2.23) by fi(x). The same inte-
gration as that leading to (3.6) has to be carried out
but with x-limits —ky<x< —¢ and 0<x<a. Inserting
these limits into (3.5) we find

—% Si@¥ =+ (4k*V e/ (27)%00")Q(y), (3.21)

(3.20)

(b) Distribution in a
nonsymmetrical excited
state.

Ko=A K,

4

(a)
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F16. 3. Energy of an f; distribution as a function of gap width.

where
1 3 2
Q(y)=—{—2+y—1n(1—a—)
3t o o y?
(y+a)? o
- —ln(l— )
ot (y+a)?
(y—a)? ( a* )
- —In{ 1— —
03 (y_a)Z
2_”2
_m@+@2 J (3.22)
Since =a)=o
aP 1 1 1
———=—{ 1+8£ln(1———)—£1n(1———)
dt 3 4% £
1 1420/ 1-4/¢
+—In > l (3.23)
VE 1=2VE1+VE

it will be seen that Q(0)=Q(a)=0Q(—a)=0 if £=§,.
Also, in contrast to the fy(x) distribution, energy must
now be spent to remove an electron from either of the
surfaces as is shown in Fig. 1b. Beyond a certain dis-
tance outward from the outer surface the function Q(y)
decreases again, reaches a minimum and then ap-
proaches zero. In this latter part it thus behaves similar
to —L(y), but its minimum is not so deep as that of
—L(y) (ratio 2:3). Also, since it is separated by a
potential hill from occupied levels so that relatively
more zero order energy must be spent to move electrons
from the f; distribution than was required to move them
from the f, distribution. For simplicity we shall con-
sider only cases in which either the f, or the f; dis-
tribution is that with lowest energy. If this is not the
case then f, f3, --- distributions must be constructed
with 2, 3 or more shells until stability is reached. This
would of course lead to an increase in the magnitude of
the total energy |S| over the value (3.17) by a factor
G=1. I should expect that at most G is of the order
(4v)*F. The existence of more than one shell does not

H. FROHLICH

alter condition (3.19), however, because this is the con-
dition that f; has a lower energy than fo.

Excited States

If the f; distribution leads to the lowest energy state,
then distributions with a different sized single shell
exist which are stable in the sense that energy must be
expended to remove single electrons. In these distribu-
tions the gap and the shell are no longer of equal width
and they have a higher energy than the distribution
with equal width. They can be obtained from the
original f; distribution by adding to (or removing from)
the surfaces thin (compared with a) spherically sym-
metrical layers. The interaction A(y—x) of such a
layer at x with a single electron at y is proportional to
expression (3.5) with |8—a|<a, so that except for a
numerical factor of order unity,

16F¢ (y—x)? a?
1 In( 1— . (3.24
[ + o? n( (y—x)z)]l .24

AQy—x)=—-
3n

where ¢ is the number of electrons contained in the
layer. A(y—x) is an even function of (y—x), and is
positive nearly up to y—a=~c. The existence of these
excited states can easily be proved. Let Ao, Ay and
At be the values of 4(y—x) at distance y—x=0, =a,
=+2a, respectively. Also let the number of electrons in
the three layers deposited on the three surfaces
(x=—aq, 0, a) be z1, 2, 23, respectively. We then require
that the total change of interaction B with a single
electron is the same near each of the three surfaces.
This requires that

(A"‘*’A 0)21+A 122+A 223_—‘3 (3253)
for the surface x=—a, and similarly

A12-'1+ (AI—*—A(])Zz‘}‘A 123=B (325b)
and

A221+A 1Zg+ (AI+A0)23=B, (325C)

where A’ is the change of interaction energy of an
electron with the rest of the electrons (S;-type). This
quantity is determined by the slope of the function
Q(y) (3.22) which through (3.21) and (2.23) gives the
required change of energy. This function behaves near
each surface y, approximately as 2(y—1v,)/3a¢ as can
be seen from Fig. 1b. Also according to (3.1) the
number of electrons in a shell of width y—yo is
8wk (y—v0)/(27)3. Thus

16F¢ 1 ot
A~

e

16F¢ ¢
-, (3.26)
3n 2

3n 2acs

where Eq. (3.4) has been used and v=1, ¢?/6?=0.3
have been assumed. Inserting this value for a?/¢? in
(3.24) solution of (3.25) yields

A,—A

1
Zz/Zl——— 1+ _—921.
A+ A'— A,

21=23,

(3.27)
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Clearly if we start in the ground state these

Az=g1+ 29t 23=—T2,

electrons must be removed from the surfaces and placed
in a different way. One possibility which will be of
importance when dealing with higher temperatures is
to put them out of the range of forces near the surfaces.
The other case leaving them near the surfaces leads to
cluster formation as will be shown presently. In both
cases the total change in energy is composed of the
contribution R, connected with removal from the sur-
faces, and R the contribution due to replacing the elec-
trons. The value of R, is independent of the way of re-
placing the electrons because with (3.25) to (3.27)

(3.28)

16F¢
Ry=3(Aot+A"—94:1+ A)z102~~
n

(Az)2. (3.29)

Non Symmetrical States*

In contrast to S(£), the following calculations [as
(3.29)] are intended to be accurate only up to a
numerical factor of order one. Assume now the Az
electrons to be equally distributed over the whole (or a
fraction) of the width of the gap, but let Az<z where
(see (2.1))

g=4kea/(21)2=3n.(a/ ko) (3.30)

is the number of places available in the gap. Assume
first that the distribution is spherically symmetrical.
Then in contrast to all previously discussed distribu-
tions the average occupation number per level is
neither zero nor unity, but Az/z<1. We shall now show
that the angular dependence of the y interaction tends
to concentrate the electrons into as small a volume as is
compatible with the Pauli principle. The energy con-
tribution R of such a distribution g(x) is obtained from
S (see (2.23), (2.24) and (2.26)) by replacing the dis-
tributions fo(x) and f(x) by fi(x) and g(x). The only
term depending on the angular distribution is obtained
from Sy and will now be denoted as

Ry=—(16F¢/3n)5 2 ¢(y) % gy, (3.31)

For simplicity assume g(x) to be independent of x. We
then require

1
——2 2 g(y)glx)y
2 q k

( ) f d cosbxd cost,d prd ¢,
4a 2w

(—2)u?
Xf dxdy———

* Not required for the discussion of the ground state.

32
(y—x)2—u? (3.32)
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The x, y integration yields
@ 2u a’
- f ——————dxdy=2u? ln(l——)
T W

u—a
—2au ln( )22><1.6ua if #<0.9a. (3.33)
uta

By inspection it is found that the exact expression
approximately rises as 2X1.6ua up to #=~0.9a then
decreases and approaches 2a? as #>a. There is thus a
tendency to concentrate electrons into as narrow an
angular range as permissible by the Pauli principle.
This can be verified by calculating the energy for such
a distribution g(x) as a function of its angular spread 7.
Let thus g(x) be constant in the range 0<6<6; and
define

1 pt 1
=Ef dc050=5(1—c0501)<1. (3.34)

cosf

Since according to (3.2), =g sinf/2 we_shall require
1 27
f d cosbid cosb, f d ord o [ 1— cosby, cost,
0

— @) J'=(2m)*(8/3)%?
if y<1.

—sinfy sinf, cos( ek
(3.35)

Then using the approximation 1.6xa in (3.33) which
holds if y<a/s, we find with (3.31) to (3.35), and with
Az=1ysg,

8 16F§‘ 16F¢
16>< 7
3n

R,= (AZ)2 4(Az)%y,

3n

if y<a/o. (3.36)

For constant particle number Az, this expression thus
decreases as the angular spread is reduced.

If we had assumed the distribution to extend only
over a width d<a instead of over the full gap width we
would have found

Az/z=bvy/a, b<a. (3.37)

In Eq. (3.33), @ must then be replaced by 5. With the
use of (3.37), Eq. (3.36) is seen to obtain a factor a/b
so that with a further use of (3.37)

Ro= (16F¢/3n)4(Az)2va/b= (16F{/3n)4zAzy%.  (3.38)

The R; contribution corresponding to S; can be
found in a similar way as 4’, (3.26). With the help of
(2.23), (3.21) and (3.30) (using again »=1, i.e.
0%/0¢’~0.4 and a*/0*=0.3),

Ri=(16F¢/3n)(0%/0¢%a)2A2Q~(16F ¢ /3n)zA2Q, (3.39)

where Q is the average of Q(y) (see (3.22) or Fig. 1b)
over the occupied range. From Fig. 1b we see that
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approximately (use (3.37))
Q0.2 if b=a, Q~b/2a=Az/2zy if b<K}a. (3.40)

Finally the R; contributions, corresponding to S are of
the same type as R;. They lead to a factor (14=1/(4»)F)
if 5<a (+ near the lower, — near the upper surface)
and thus vanish on an average. For b=a, R; vanishes
exactly. Thus with (3.29), (3.36), (3.38) and (3.39) the
total energy required to form the cluster of Az electrons
is

R=Ro+Ri+R:~(16F¢/3n)(Az)?x,  (3.41)

where x is a factor depending on the shape. In particular
(see 3.40)
x=14(4v%/A2)+(1/27) if b<a (3.42)

and
x=14+4v+3z/Az=1+ (44z/2)+2/Az if b=a. (3.43)

It will be noticed that if $<a, R has a minimum for
given Az when 16vy*=Az/z or using (3.37) when
164*=b/a. But if b becomes larger, then the value of v
leading to the smallest value for R is y=Az/z.

Establishment of a cluster in the gap leads to a
change of the energy of an electron near the outer
surface by approximately (see (2.25))

16F¢ oo? sin%d/2
- Az
3n  (3a/2)?—oq?sin29/2

(3.44)

if 6 is its average angle with the position of the cluster,
and 3a/2 its average distance. This quantity is negative
(attractive) if

sinf/2<3a/2023. (3.45)

Some energy can be gained therefore by removing a
fraction of the Az electrons to the outer surface within
an angle 8. This will not change appreciably the energy
R; in the form (3.41) for R it only leads to a slightly
different definition of the form factor x.

It might be expected that if Az/2<1 the form factor
x should be independent of Az for the shape at which
R has its minimum, so that R « (Az)2. That this is not
true for the two cases (3.42) and (3.43) shows that we
have not found the best shape. In fact one should
hardly expect that this shape has sharp edges as have
our models. Improvements will decrease the energy
R+ R»; but since R, is independent of shape, always
x> 1. Equation (3.41) therefore represents the correct
order of the energy R.

IV. DISCUSSION OF THE ENERGY

The results of the calculations of the previous section
are based on the interaction energy —y in k-space
[Eq. (2.25)]. This quantity exhibits two tendencies as
can also be seen from Fig. 4: for small energy difference
[(x—y)?<?] it tends to concentrate electrons into a
narrow angular range in k-space. If this is impossible
because all states are filled then the second tendency
comes into play. It attempts to place electrons at dis-
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tances of the order x—y=g¢. In fact by averaging —¢
over the angles we obtain, as in (3.5),

—¥=14+(y—2)*"/o*) n[1—0*/(y—x)*]. (4.1)

As can be seen from Fig. 5 this function is positive
nearly up to o, has a (negative) minimum just beyond
it and then approaches zero.

For a first orientation on the influence of interaction
on the distribution function it is useful to see that
according to Egs. (3.6) and (3.7), or to Fig. 1a, inter-
action energy can be gained by removing an electron
from the surface of a normal (Fermi) distribution fo.
This suggests calculation of the change S;(§)+S2(£) of
interaction energy when a shell of width a is shifted
outward from the surface leaving a gap of width ¢ as
shown in Fig. 2a. The change of interaction energy due
to the establishment of this distribution depends on the
interaction parameter £=a?/0? (see Eq. (3.13) and
(3.14)) as illustrated in Fig. 3. It has a minimum at
£=£>0.3. Zero order energy S3(£) on the other hand
increases linearly with ¢ as indicated by the dotted
line. It follows that the total change in energy S(£),
[Eq. (3.17)] has a minimum only if condition (3.19) is
fulfilled. Otherwise no minimum exists and the f, dis-
tribution remains stable. Again as before we can now
investigate the change in interaction energy when a
single electron is removed from one of the surfaces.
Figure 1b drawn according to Eq. (3.22) shows the
result if £=£,=0.3. In contrast to the f, distribution
the energy of interaction now increases near the sur-
faces. At a larger distance from the outer surface, how-
ever, a similar decrease to that found near the fy
surface is repeated; again interaction energy can be
gained when removing an electron from the surface to
the minimum. But now the depth of the minimum is
only about 2 of what it was in the f, case, and the
distance from the surface is larger by a factor two,
approximately. Therefore the increase in zero order
energy when removing an electron from the surface is
larger than in the f, case. If the interaction parameter F
(see (2.9)) is very large, removal of a second shell (f2
distribution) from the surface may lead to a further
decrease in total energy. We shall assume here that
this is not the case. Its main effect would be to increase
the magnitude of the total energy S(¢) by a factor
smaller than two.

If condition (3.19) is not fulfilled little doubt can
exist that in the approximation used here the f, dis-
tribution (normal state) has the lowest energy. If
however (3.19) is fulfilled, then on the assumptions
made it seems likely that the f; distribution leads to
the lowest energy. A general proof has not been at-
tempted, however, and would probably be very difficult.

In metals for which the f, distribution forms the
lowest state excited states must exist in which electrons
from near the surface are moved to higher energies
similar to the case in which the interaction is neglected
completely. It should be expected then that when the
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thermal energy of the electrons is larger than S,
(¢22£,), these metals behave as in zero order, but that
below this temperature deviations of a quantitative but
not qualitative nature occur.

In case the f; distribution forms the lowest state
there will also be excited states in which single electrons
have been removed from the surfaces. This alters the
energy and gap width of the remaining f; distribution
as discussed in connection with Eq. (3.25). One should
again expect that at temperatures sufficiently high, the
metal behaves as in zero order. Below this temperature,
however, changes of a qualitative nature occur because
of the qualitative difference between the f; and f,
distributions.

It was not intended in the present paper to deal
quantitatively with excited states required for questions
of temperature dependence. Another type of excited
states may be of importance, however, even at the abso-
lute zero of temperature. In these states denoted in Sec.
111 as non-symmetrical states electrons are clustered in
the gap of the f, distribution as shown in Fig. 2b (or pos-
sibly near the outer surface). The energy of such a
cluster was found in Sec. IIT by minimizing the energy,
and it can be seen then that it is stable in the sense that
energy must be expended to divide it into smaller parts
or to remove single electrons. To return to the ground
state would require, therefore, that the cluster be first
dissolved. This would be impossible by processes acting
on single electrons like scattering on lattice imperfec-
tions. In view of this stability the number Az of elec-
trons contained in the cluster which according to Eq.
(3.41) determines its energy can be used as a parameter
of the system. Then from (3.41) and (3.17) the total
energy per unit volume is given by

S(§)+R(Az)=S(§)+ (16F5/3n)x(A2)".

The formation of stable clusters can be understood in
a qualitative way immediately from the interaction —y
[Eq. (2.25) and Figs. 4 and 5]. This interaction tends
to concentrate electrons within the gap as far as is
permissible by the Pauli principle. The opposite
tendency, dispersal over all angles, would manifest
itself only at sufficiently high energy differences re-
quiring (x—y)?> o¢?, and would thus require energy. The
most important energy term (R,) leading to cluster
formation is derived from S, in Eq. (2.24) by replacing
there the distribution f(x) by the distribution function
g(x) of the cluster, according to (3.31). This term which
might be denoted as the self-energy of the cluster is
proportional to (Az)?, and to the average value —(¢)a
obtained by averaging the interaction —y between two
electrons in k-space for both electrons over the cluster.
Then consider two limiting cases on the assumption
that Az is very small: (z) a spherically symmetrical dis-
tribution in which the electrons fill a very thin shell.
Then from (4.1), —(Y)a=1 if Az is so small that the
width of the shell is small compared with oo. On the
other hand for a thin needle in radial direction

“.2)
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(sin?0/2)s—0 and ((x—y)w— © so that —(Y)w—0,
showing that the needle shaped cluster has the lower
self-energy. Other energy terms, however, behave in
the opposite way and the result is a more regularly
shaped cluster.

Finally it should be mentioned that the establishment
of a stable configuration can also be understood in
terms of the spontaneous transitions of electrons con-
nected with the emission of lattice quanta. Whenever
such transitions are possible, occupation of the final
states by electrons leads to a decrease in y-interaction
energy. On the other hand, it can be seen from Fig. 4
that once a cluster has been formed in the gap, transi-
tions into other directions within the gap would require
energy. Thus changes due to transitions will not
spread the cluster over the gap.

It should also be pointed out here that the change
from a fo to a f; distribution leads to an alteration of
the distance correlation of two electrons in ordinary
space. Its main effect is to increase the probability of
finding two electrons at a distance smaller than 1/a.
The decrease in interaction is understandable in an
elementary way because one electron can benefit from
the lattice deformation produced by another one if it
remains sufficiently close (in ordinary space) to it.

V. REMARK ON THE ELECTRODYNAMIC
PROPERTIES

In Secs. ITT and IV it has been shown that in metals in
which the f; distribution is realized in the ground state
stable non-symmetrical states exist which lead to
cluster formation in k-space. In these clusters a number
Az of electrons move in a similar direction giving
thus rise to an electric current in the absence of an
electric field. We shall therefore identify the f; dis-
tribution with the superconducting state. It should be
remembered that according to Eq. (4.2) the energy of
these current carrying states is higher than the ground
level by a term proportional to (Az)2.

The existence of such stable currents has often been
postulated as an alternative phenomenological hy-
pothesis to postulation of the London equations® and
had first thought that the two are closely related. For if
we assume clusters of a very small size so that all
electrons move practically in the same direction with
velocity #ko/m the density of the electric current is

Jj= (ehko/m)Az. (5.1)

Inserting from here into Eq. (4.2) with the use of (2.2),

the energy per unit volume is found as
SE+IN?,

A= (16Fx/3)(m/e*n). (5.3)
From our discussion at the end of Sec. III it seemed
likely that for small Az the form factor x is independent

5 F. and H. London, Proc. Roy. Soc. A149, 71 (1935); also
M. von Laue, Theorie der Supraleitung (Springer, 1947).

(5.2)
where
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F16. 4. The —y interaction in k-space. It is repulsive between
an electron in the shaded region and the electron k. Otherwise it
is attractive. At the boundary it is singular.

of Az and hence of j. Also x <1 and hence since condi-
tion (3.19) must be fulfilled,

16Fx/3> 4. (5.4)

It must now be remembered that we have not yet taken
account of the magnetic interaction energy between
electrons connected with the current. Tentatively this
might be done macroscopically by adding a term H?/87
representing the energy of the magnetic field H, where

curlH=4rj/¢, divH=0. (5.5)
Thus with (5.2) the total energy per unit volume is

2

1
U= U0+S(E)+£)‘j2+ (5.6)

8

The existence of an energy term proportional to 7%, in
addition to the H? term is characteristic of the London
equations. The term U, represents the energy of the
normal state, and S(£)it will be remembered is the energy
difference between the superconducting and the normal
state in the absence of a current.

The above outlined procedure holds only for very
thin layers, however, where the magnetic interaction is
very small. Otherwise (5.1) becomes invalid. It will
then be necessary to introduce the magnetic field at an
earlier stage. (See Notes added in proof.)

VI. COMPARISON WITH EXPERIMENTS

The calculations of the previous sections were based
on a free electron model. According to the electron
theory of metals, permitted energy levels have a band
structure. When such an energy band is not too highly
filled the free electron model is sound. On the other
hand, when a band is nearly filled a similar model applies
if holes (empty levels) instead of electrons are con-
sidered. It can easily be seen that in this case all our
previous results hold. For by introducing a hole dis-
tribution function sy=1— fx we find that in our basic
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expression (2.11) we replace fx(1— fa) by kq(1— ;) thus
interchanging %k and ¢. In going to Eq. (2.12) the same
interchange has to be carried out in the denominator,
thus leaving the whole expression unaltered. From the
experience gained in the theory of metals it appears that
our calculations should apply reasonably well to most
metals except for the transition metals and metals of
the Bi group.

The Condition for Superconductivity

It has been assumed in the previous sections that in
superconductors the distribution in the ground state is
of the f; type shown in Fig. 2a. This condition is
realized if the interaction between the electrons and the
vibrational field is sufficiently strong to fulfill condition
(3.19). Using (2.9),

(4v)¥F = (4)'C?/3¢ M s2> 1,

(f 4v<1)  (6.1)

is thus the condition which must be fulfilled by a metal
to make it a superconductor. Since the required strong
interaction also leads to high normal resistivity p at
high temperatures 7" where p « 7 one should expect
that condition (6.1) can be written in terms of p. In
fact it is found that®

KT/p= (4vM/7m*m)(;/C)*(K6:)%/ kohas,  (6.2)
where @, is the Bohr radius. By using the identities
expressed by Egs. (2.4), (2.3), (2.2), and (2.1), together
with the definition of the number » of free electrons per
atom we obtained

KT/p= (12v43/247)(h3/m2ao) (M s2¢/Ctn.  (6.3)

-

-y

F1G. 5. Angular average —y of the —y interaction.

8See Eq. (36.12) of reference 3. Replace there (KodE/dK,)?
by 4¢2, no by v, 6 by 6; and & by K.
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TABLE I. Data for normal metals.

Normal Li Na K Rb Cs Cu Ag Au Be Mg Ca Sr Ba
nX 102 (cm™3) 4.63 2.56 133 1.08 0.87 8.50 5.90 593 125 4.34 233 180 1.59
p (@ 1em™, 273°%) 12 24 16 8.6 5.6 65 67 49 18 25 24 3.3 1.7
4iF 2.2 0.60 047 071 0.88 0.74 0.50 0.68 4.0 1.0 055 31 5.3
TasBLE II. Data for superconducting metals.
Superconducting Zn Cd Hg Al Ga In Tl Sn Pb
n 6.60 4.66 4.40 6.06 5.13 3.86 3.52 3.74 3.32
o1 18 15 44 34 19 12 7.1 10 5.2
41F 21 1.8 5.6 1.0 15 1.7 2.8 21 3.6
Consequently condition (6.1) becomes TasLE III. Critical magnetic fields for superconductors.
= 5/3 H. . -
(4V) F (an /KT)D’ (64) 5 H. (theory) polat(:; 1:oelx‘t—i-a()).
where (cm/sec.) v=1 (gauss)
D= (2}*X4/7)(h3/ma,) 6.5) Zn 3.7 4100
Sn 2.6 2800 300
Pb 13 1700 800

is a universal constant. The simplest way to find F for
various metals is to take one metal, say silver, as a
standard. Here according to Bethe? (p. 524), (C/{)aq
=1.2. Furthermore, from (2.2) and (2.1), {1,=5.5 ev
is obtained with »=1 (which follows from optical and
Hall effect measurements). With the value s=2.7X103
cm/sec. for the velocity of sound, and »=1 we find
according to (6.1),
43F po=(43/3)(C*/ t Ms?) ag=0.50<1, (6.6)

which shows that silver does not fulfill the condition
for superconductivity. With this value we can now
express the condition (6.4) for superconductivity in the
form

(4v)3F = 43F 5o (pnv¥'3/ pagh ag)
=0.50(pn/pagnag)v®3>1. (6.7)
In this condition the only quantity that brings some
uncertainty is the number » of free electrons per atom.
This number is for most metals (not only for mono-
valent ones) of the order =1 although accurate values
are difficult to obtain. Tables I and IT show the striking
result that for none of the superconductors is 43F
smaller than unity, and only for four (Li, Be, Sr, Ba)
of thirteen normal metals is it larger than unity. It is
of interest to see that this quantity is small for alkali
metals because of their small value for #, but for noble
metals because of their low resistivity. It should not
be forgotten, however, that the uncertainty of the
number » of free electrons per atom reflects on the
above results. Furthermore, the resistivity at 273° abs.
used in the tables need not in all cases be in the high
temperature range where px 7. It may also happen
that electrons fill two energy bands, only one of which
goes into the superconductive state. In this case (6.7)
would be invalid. Finally, it should be of interest to

see how the superconductivity condition (6.1) varies
with the number of free electrons when other parameters
are not altered. According to (2.1) and (2.2), ¢« n.t.
Thus if ¢ is defined as the value of { if ny=n (v=1)
then (6.1) becomes
1/ (4C% 3¢ MsH>1; (4v>1).  (6.8)

This shows that to make a normal metal supercon-
ducting the number of free electrons per atom, », should
be reduced, providing this can be done without reducing
C?/ M. 1t seems likely that an effect of this type occurs
when alloys of normal metals become superconductive.
It suggests the formation of an alloy between a mono-
valent metal and a transition metal in such a way that
most electrons of the monovalent metal are used to
fill up the incomplete shell of the transition metal.
This occurs, for example, in Pd-Au with up to 40 per-
cent Pd, as has been shown by Mott;’ but the variation
of the other parameters should be taken into account
before making definite predictions.

Critical Magnetic Field

On application of a magnetic field larger than a
critical field, H,., a superconductor is transferred into
the normal state. It is shown in the phenomenological
theory® that this is a thermodynamic consequence of
the magnetic properties, and that H2/8r is the dif-
ference between the free energies of the metal in the
normal and in the superconducting state. This energy
difference has been calculated in Sec. III, Eq. (3.17)

7N. F. Mott, Proc. Phys. Soc. London 47, 571 (1935).
8 C. J. Gorter and H. Casimir, Physica 1, 306 (1934).
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and is denoted by —S(£). Thus at T=0, using v=m./n,
and (2.9)

H? 3X4F
=————ms2nV§[P(E)— ]
8r  2X2 F(d)t
C*m
——Zad P0- ] 69)
M (4v)tF

The expression in the bracket refers to the value of ¢
at which it has its minimum. Its value is always less
than 0.3 as can be seen from Fig. 3. It is close to 0.15
for values of (4}F)=2, but 0.2 if (4}F)=3.6 (Pb). To
find H. requires only the root which for both values
will be equated to 0.4 which involves an error of only
10 percent. Thus from (6.9)

H,=2.2X (43F)}(nms?) . (6.10)
Values of 43F and of # are given in Table II. With
v=1, Table III shows values of the order of 1000 gauss
in agreement with the magnitude obtained experi-
mentally, though somewhat larger. It follows that the
energy difference calculated in Sec. III has the correct
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absolute magnitude. Finer details would no doubt be
very sensitive to deviations from the free electron model.

Notes added in proof: (1) The isotope effect [see Reynolds ef al.,
Phys. Rev. 78, 487 (1950); Maxwell, Phys. Rev. 78, 477 (1950)]
which has recently come to my notice follows quantitatively from
the proportionality of |S| with the inverse isotopic mass 1/M
[see e.g. Eq. (6.9) where F depends on Ms? only and is hence
independent of the isotopic mass] as was stated in a recent note
[Frolich, Proc. Phys. Soc. A63, 778 (1950)]. This agreement
provides a direct check for the fundamental assumptions of the
theory.

(2) Dr. Kun Huang has checked the integrations without mak-
ing the approximations (¢—)2<k¢%. He confirmed the values for
S1 and S»; but the repulsive energy S; has to be reduced by a
factor two. We have also found that the change of Coulomb
exchange energy provides a further repulsive term; together with
S; it leads approximately to a total increase in repulsive terms by
a factor three. This reduces all F values of the table by about a
factor 3 and thus does not essentially alter the conclusions. It
reduces H. for lead to about 1200 gauss thus improving the
agreement with experiment.

(3) I have now been able to show that the assumption of a
homogeneous magnetic field H, however weak, in a sufficiently
extended metal would lead to a reduction of the magnitude of
the S-interaction by a value independent of H. Such a field
can therefore not exist in a superconductor as required by the
Meissner effect. The calculations are not yet sufficiently advanced
to decide whether the presence of a field always leads to the normal
state or whether an intermediate state may occur.



