From the Digital Library of
Paul M. Grant, www.
w2agz.com

PHYSICAL REVIEW B VOLUME 13, NUMBER 11 1 JUNE 1976

Proposed model of a high-temperature excitonic superconductor*

D. Davis,! H. Gutfreund,* and W. A. Little
Physics Department, Stanford University, Stanford, California 94305
(Received 16 October 1975)

We present a detailed calculation of the transition temperature of a model filamentary excitonic
superconductor. The proposed structure consists of a linear chain of transition-metal atoms to which is
complexed a ligand system of highly polarizable dyelike molecules. Calculations of the electronic properties
and experimental data on related materials are used to estimate the strength of the excitonic interaction,
Coulomb repulsion, and band structure. From this the superconducting transition temperature was calculated
by numerical integration of the gap equation. For the particular structure proposed, transition temperatures of
several hundred degrees are calculated. However, we find superconductivity only in those systems where the
excitonic medium is within a covalent bond length of, and completely surrounds, the conductive spine. This
imposes severe constraints on the structure of any excitonic superconductor. We show that for the structure
proposed the momentum dependence of the exciton interaction results in the superconducting state being
favored over the Peierls state and in vertex corrections to the electron-exciton interaction which are small.

I. INTRODUCTION

The phonon-exchange mechanism is generally
believed to be responsible for superconductivity
in all the presently known superconductors. The
possible existence of an alternative mechanism,
the so-called exciton mechanism, was suggested
by Little! in polymeric systems and extended by
Ginzburg? to sandwich structures. The term “ex-
citon” applies here broadly to any electronic ex-
citation. In this new mechanism the effective at-
traction between electrons on the Fermi surface
is induced by the exchange of an exciton. The
common feature of the models proposed by Ginz-
burg and Little for the realization of this mechan-
ism is the distinction between the electrons which
are expected to form Cooper pairs and those which
participate in the virtually excited excitons. These
two types of electrons are confined to two spatial-
ly separated regions in close contact with each
other. Little proposed a one-dimensional spine
of conducting electrons with organic dye molecules
chemically bound to this spine at regular distances,
while Ginzburg discussed thin metallic films sand-
wiched between, or coated on one side by, layers
of a highly polarizable material.

One of the main attractions of the proposed ex-
citon mechanism is the apparent possibility of
higher transition temperatures. This follows
from the BCS formula for T:

Tc=6e"/"““*’, (1)

where A characterizes the strength of the attrac-
tive interaction necessary for the formation of
Cooper pairs and p* the repulsive Coulomb inter-
action. In the case of the phonon mechanism ©

is approximately the Debye temperature which is
of the order of several hundred degrees. In anal-
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ogy, for the exciton mechanism © is expected to
be a typical electronic excitation temperature of
the order of 10*-10° °K, thus leading to much high-
er values of T.. This argument is oversimplified
and the conclusion is not correct in general but
depends upon the details of the system. While it
appears that under special conditions the exciton
mechanism may lead to higher values of 7, than
those obtained with the phonon mechanism, the
high temperature of an electronic excitation is by
itself not sufficient to yield unusually highvalues of
T.. This point will be discussed later in greater
detail. The original proposal of the exciton mech-
anism was followed by a series of critical argu-
ments and counter arguments, most of which are
discussed in review articles by Ginzburg.®

We believe that of all the systems suggested for
the realization of the exciton mechanism of super-
conductivity, the one-dimensional structure has
the best prospects for success. The arguments
for this opinion will be made clear in Sec. VIII.
In the present paper we discuss in detail a par-
ticularly favorable metal-organic system consist-
ing of a linear chain of platinum atoms closely
similar to the structure of the much studied KCP
system® [K, Pt(CN),Br,, - 3H,0], but with the cyano-
ligands replaced by polarizable cyanine-dye-like
ligands. The most favorable system seems to be
the disclike structure illustrated in Fig. 1. Com-
pounds of this general type can be expected to
stack so that in the solid state the platinum atoms
would form a conductive linear chain. However,
it is not clear whether this particular compound
will stack, but means are known for inducing
stacking between aromatic moieties by the addi-
tion of suitable substituents.® This may be diffi-
cult but is not expected to be impossible. The
chemical properties of such systems and the dif-
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FIG. 1. Proposed model of the structure of an excitonic
superconductor. (a) Top view of square planar phenan-
throline-dye ligands complexed to Pt. Double bonds in
the chromophore are omitted for simplicity. Et stands
for ethyl. (b) Side view of chain.

ficulties associated with their preparation are dis-
cussed in Sec. II.

In the bulk of the paper we describe the proce-
dure and details of a calculation of the supercon-
ducting transition temperature in such a system.
The purpose of this calculation is to see whether
in the most favorable, but conceivably realizable
system, an excitonic interaction of sufficient
strength to yield high-temperature superconduc-
tivity is obtainable at all. Qur conclusion is that
it is possible, but the requirements are rather ex-
acting and not easily met. In particular, the dis-
tance between the dye molecule and the conductive
spine has to be of the order of a chemical bond
length and several dye molecules appear to be
needed for each atom of the spine.

In addition to a detailed calculation it is also
necessary to justify the applicability of the con-
ventional theory of superconductivity which works
so well for the electron-phonon system to the com-
pletely different electron-exciton system. One dif-

ficulty which arises from the replacement of pho-
nons by excitons is that of vertex corrections, an-
other is that of exchange. There are other diffi-
culties associated with the one dimensionality of
the proposed system such as the role of fluctua-
tions and the competition between the supercon-
ducting and the Peierls instability. All these ques-
tions are discussed in Sec. VIII. Of particular
significance are the conclusions that for the specif-
ic model systems discussed here the vertex cor-
rections are small and that the pairing instability
is favored over other possible types of order.

Although there is at present no experimental
evidence for the exciton mechanism, it seems that
it does not violate any physical principle and its
existence or nonexistence will depend on the specif-
ic properties of the system under consideration.

II. SPECIFICATION OF THE MODEL SYSTEM

In this section we describe some of the chemical
details of a proposed structure illustrated in Fig.
1 and the simplified model system of Fig. 2 upon
which calculations were done. For those more in-
terested in the physics of the model and less in-
terested in these important but chemical details,
this section may be omitted.

The possibility of using a stacked array of
square planar transition-metal complexes as the
spine of a one-dimensional superconductor was
first suggested by Collman.® This suggestion was
based on the work of Krogmann,’who showed that
many Pt complexes could be oxidized to give high-
ly conductive quasi-one-dimensional metals. Of
these the compound KCP [K, Pt(CN),Br,, * 3H,0]
has been studied most extensively by many groups.
Our approach has been to attempt to replace the
simple ligands (CN in KCP) with other more polar-
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FIG. 2. Simplified version of structure of Fig. 1 for
which detailed calculations are presented in this paper.
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izable structures so as to satisfy the theoretical
criteria for an excifonic superconductor. Prelim-
inary calculations on structures based on a gly-
oxime ligand system® indicated that any polariz-
able groups which might be attached to this ligand
would be held at a distance too far from the spine
for the excitonic interaction to be sufficiently at-
tractive to lead to superconductivity. Winkler

and Mayer® in our laboratory then showed that it
was possible to complex certain cyanine-dye bases
directly to a transition metal such a Pt and so
bring the exciton system into much closer proxim-
ity to the spine. The metal effectively quartern-
izes the nitrogen and transforms the dye base to
the dye. Based on this result we proposed the
structure illustrated in Fig. 1. Each unit of the
chain consists of a platinum complex of two, 1-10
phenanthroline ligand systems with cyanine-dye
chromophoric units attached to each phenanthro-
line at the 4 and 7 positions.

In the proposed structure the polarization of the
chromophore results in the movement of a posi-
tive hole between one nitrogen atom remote from
the Pt site and the nitrogen adjacent to the Pt. Be-
cause of this large movement of charge a strong
electron-exciton interaction can be expected. For
the proposed structure one would require four
negatively charged counterions (Cl-), one for each
of the chromophore units plus two additional nega-
tively charged ions to yield Pt in the Pt (II) oxida-
tion state. Then the Pt chain needs to be oxidized
to give a partially filled d,2 conduction band. Vir-
tual excitation of the chromophoric units provide
the excitonic interaction.

The d,2 orbitals of the Pt atoms of the chain
overlap with one another creating a linear conduc-
tive pathway. It is expected from the geometry
that only a weak overlap will occur between these
orbitals and the orbitals of the phenanthroline li-
gands so that the two sets of orbitals may be
treated as essentially orthogonal to one another.
Because of this the Coulomb interaction between
the d electrons and the electrons on the ligands
will be much greater than any exchange interac-
tion.

Because of the van der Waals repulsion between
the 7 electrons of the proposed bulky ligands the
Pt atoms along the chain could be no closer than
about 3.4 A. We assume here that even at this rel-
atively large metal-metal separation a partially
oxidized salt of this general type can form a high-
ly conductive spine. This has yet to be established.
We also assume that the proposed ligand system
will stack in the manner indicated. Prior to syn-
thesis this is not known of course. However, the
point of our calculation is to see whether, given
these favorable conditions and this favorable struc-

ture—a highly conductive spine in intimate con-
tact with a highly polarizable excitonic medium—
can one expect superconductivity or not.

We believe that the proposed structure or a
closely related one has a reasonably good chance
of being synthesized. Some work has been done
on some closely related structures. In particular,
Lorentz!? in our laboratory has prepared a mero-
cyanine version of the ligands illustrated in Fig.
1. This is an important step forward, first, be-
cause the merocyanines can be prepared with a
polarizability as large as that of the cyanines.!!
To do this one requires the appropriate choice
of terminal groups on the chromophore unit so as
to make the electronic environment effectively
symmetric about the center of the dye as in the
cyanines. Second, the merocyanines are electri-
cally neutral so that the ligand system would not
carry the large positive charge as it does in the
cyanine dye case of Fig. 1. The presence of the
large charge on the latter may well inhibit the
formation of a stacked array but the merocyan-
ines would not have this problem.

Whether or not the proposed system would form
the stacked array is impossible to predict at pres-
ent. However, enough is known about stacking
forces to guess that the proposed stacked array
has some chance of occurring. The reasons for
believing this are as follows: First, models of
the structure show that the disclike ligand system
with its counter ions is a relatively tightly packed
structure filling all the available space and with-
out large holes in it. Because of this the van der
Waals energy would be at a minimum. Second,
the large transition dipole moments of the indivi-
dual polarizable dyelike groups on the ligands
would favor a face-to-face arrangement of the
planar ligands because of the attractive contribu-
tion to the van der Waals energy from the dye-dye
interaction. A small rotation of the ligand system
from one Pt atom to the next could be expected to
avoid direct contact between the nitrogen atoms
on the phenanthroline, each of which carry a net
positive charge. The metal-metal interaction is
probably too weak to contribute significantly to
the packing forces except perhaps after oxidation
of the Pt chain.

In this paper we present detailed calculations on
a simplified version of the system illustrated in
Fig. 1. Instead of working with the large phen-
anthroline groups we use a skeletonlike structure
of the chromophore units alone as illustrated in
Fig. 2. This simplifies the description of the sys-
tem and illustrates more clearly the physical
points. A full calculation on the system of Fig.

1 and several related cyanine, carbocyanine, and
dicarbocyanine structures have been done.? They
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show that the results reported here for the model
system (Fig. 2) are typical of the results obtained
for the full system with similar size of the chromo-
phore structures. The carbo- and dicarbocyanines
give higher 7_’s but would make more difficult the
chemical problems of synthesis, complexation,
and oxidation.
One additional point should be made in regard
to the complexation of the dye base to the Pt atom.
In our calculation of the cyanine moieties of Fig.
2 we have treated as equivalent the two ends of
the dye—one attached to an ethyl group and the
other to the Pt. This is not strictly valid, but
there is evidence'® that by modifying the half of
the dye remote from the spine the electronic en-
vironment at each end can be made essentially
symmetric as can be done for the merocyanines.
In that case the polarizability is found to be essen-
tially the same as for the model system proposed.
In Sec. III we discuss how the superconducting
T, is calculated for this system and in Secs. IV,
V, and VI how the exciton band, exciton-electron
interaction, and Coulomb interaction are calcu-
lated.

III. EQUATION FOR T,

To calculate the transition temperature T, we
have adopted the method developed by Kirzhnits,
Maximov, and Khomskii'? (to be referred to as
KMK). This method applies to a weak coupling
superconductor and it results in a simple BCS-
like equation for the gap function and for T.. Its
merit is that it brings out explicitly and in a con-
venient form the relationship between the kernel
of this equation and the microscopic properties of
the system such as the electron band energies,
the exciton band energies, and the electron-exci-
ton coupling matrix elements.

We shall now summarize briefly the KMK meth-
od and discuss it with regard to the system under
consideration. The starting point is the integral
equation for the anomalous Green’s function F,
which at T =T, reads

F(-ﬁy iwn)= —G(ﬁi iwn)G(_ﬁy - iwn)

dsk - b
X ; f (2")3 V(p —k9 Z(wn_wm))
X F(K, iw,), @)

where w,=(2n+1)7T,. This equation is already an
approximation in that it neglects vertex correc-
tions. In the case of the phonon-mechanism this
is justified by Migdal’s theorem, which asserts
that these corrections are small in view of the
ratio wp/€r (wp—Debye energy, € ,—Fermi en-
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ergy) being much smaller than unity. When the
Debye energy is replaced by a characteristic ex-
citon energy this is no longer the case. We shall
return to discuss the question of vertex corrections
in Sec. VIII, where we show that the special pro-
perties of the exciton system proposed here do in-
deed keep these corrections small, but at present
we proceed from Eq. (2). At T, the “imaginary
time” Green’s functions G of the superconducting
state are replaced by their counterpart in the nor-
mal state and approximated by the unperturbed
functions G,

Go(-ﬁ, Zw,,)=1/[1(0,,—§(‘f1)], (3)

where §(P)=€(D) - €5 is the single electron energy
measured with respect to €. It is this approxima-
tion which restricts the present treatment to weak

coupling superconductors.

The essential feature of the KMK method is the
use of the Lehmann representation for the effec-
tive electron-electron interaction. The latter can
be written in the form

V(q, w)=V,(q, w)/e(§, w) (4)

and the finite temperature analog of the Kramers-
Kronig relation for the reciprocal of the dielectric
function' leads to the spectral representation

N * w'p(§, w’) dw’
V(q,iwn)—VO(Q) (1 2[ (lJﬁ‘F(-U’z .
(5)

The spectral density p({, w) is relatr to the di-

electric function by
P4, w)=-(1/m) Im[1/€(q, w)]. (6)

It is also convenient to write the anomalous
Green’s function in the spectral representation

- . wf(ﬁ) x)dx
= —_—— 7
F(B, iwn) £e fw,=x (™
Substituting Eqs. (5) and (7) into Eq. (2) one can
perform the frequency sum explicitly and after
some manipulations and plausible approximations,
described in Ref. 13, one obtains the equation

3 =i >
o(P)=- f (d k U(D,K)tanh( £ (K)/2T,)

27 2E(K) (k)

(8)

where

() =21&(®) [ F(5, 0,

and (9)

T ®_p(P -k, w)dw
U(p,k)—Vo(p—k)<1—2[ m)
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Before confining the discussion to the one-di-
mensional electron-exciton system, let us men-
tion briefly how one proceeds in the conventional
case from Eq. (8) to obtain an equation similar to
the BCS equation. One assumes that the material
is either isotropic or that the “dirty” limit ap-
proximation is valid.!® This allows one to replace
the three-dimensional momentum integral by an
integral over the energy variable £’ and over the
“angle” variables in momentum space, leading to
an integral equation in a single energy variable

_ fdé’ Ut & )ta'“z‘(;, /2T ) (& ) (o)

where U(¢, ¢') is essentially U(P,K) integrated
over the angle variables of k in momentum space.
Comparison with BCS theory shows that ¢(£)
=ReA(w=|§,,|). Without discussing in detail the
form of U(%, ¢£’) in the general case, we point out
its two most important properties: (a) the kernel
U(%, £') is a smooth function of the variables &, &',
unlike the interaction itself, which has a compli-
cated resonant structure; (b) the magnitude of
U(t, £') decreases when either one of the variables
&, £’ departs from the Fermi energy. To make the
analogy with the BCS equation complete, one has
to separate the contributions of the phonon and the
Coulomb interactions. The first has an effective
cutoff at w,. The latter extends over a much larg-
er energy range, however, it may be replaced by
a reduced pseudointeraction'® which is also cut off
at an energy w, from the Fermi energy, so that
one finally gets the finite-temperature BCS-like
Eq. (10) with the &’ integration from — wp to +wp.

Let us now return to Eq. (8). In the one-dimen-
sional case there is only one integration variable,
so that we shall gain nothing by transforming to an
energy variable. Also, the concept of the Coulomb
pseudopotential is not useful in our case because
the exciton interaction extends over an energy
range of the same order as the Coulomb. We
therefore prefer to leave Eq. (8) as an equation in
the momentum variable and we shall extend the in-
tegration over the entire Brillouin zone:

__ (™* dk U(p, k) tanh( &(k)|/2T,)
o)== | - 350 (k).
11)

Let us now be more specific about the kernel
U(p, k). The spectral density p(q, w) in Eq. (9)
may be separated into the contribution of the ex-
citon-induced interaction p., and the contribution
of the Coulomb interaction p,. We can similarly
separate U(p, k) into its two components

Vo(p =k)px(p ~ %, w)dw
w+| E(P)+] (R

U, (p,2)==-2 L (12)
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and

V(p-k)(1-2 [ L=k w)do
Uc(p, #)=Ve(p k)(l 2[ w+|£(1>)l+l£(k)l)

(13)

The numerator in the integrand in Eq. (12) is
related to the imaginary part of the effective ex-
citon-exchange interaction. We write the latter
in the form

V. (@, 0)= 2194 (0)Dy (g, w), (14)
o
where @, (q) is the electron-exciton coupling to be
discussed in Sec. IV and D, (g, w) is the propagator
of an exciton of momentum ¢ and energy w, which
is assumed to be a boson Green’s function

Do (g, w)=2Eo(q)/[w? - E% (@) + 5], (15)

where E(q) is the exciton energy and « is a band
index in the case where there are several types
of excitons. On account of Egs. (6) and (15), we
obtain

Vo@) P (@, w) = D 1Qx(@)2Xw —Eo(g)),  (16)

and the exciton-exchange contribution to the kernel
becomes

Uex(py k)=—2 ; Ea(pthx(p ‘k)'

=k)+IE(PN+ E(R
17)

The calculation of U, (p, k) thus requires a know-
ledge of the electron-band energies £(p), the ex-
citon-band energies E,(g), and the coupling con-
stants @,(q). The calculation of the latter two
quantities is described in Secs. IV and V. The
Coulomb part of the kernel will then be discussed
separately in Sec. V.

IV. CALCULATION OF THE EXCITON-BAND ENERGIES

We consider first an electronically excited state
of the array of polarizable molecules such as that
of Fig. 1 in which the molecule in the mth unit cell
at the /th site in this cell is in the excited state
Xu(Rn;), and all the rest of the molecules are in
their ground state y,(R,,), ¥o(R,),... . Let this
excited configuration be given as

‘I’U(Rm1)=¢o(R“)"'X,,(Rm;)“‘IPO(RN,)- (18)

We assume we have z different sites in the unit
cell and that there is a total of N unit cells. Due
to interactions between the molecules, delocal-
ized exciton states can be formed from the set of
functions ¥ ,(R,;). These we take of the form
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1
Vo (g) = }; ul (q)+ivY ()] e F*m¥y (R ),
a Vﬁm' ,u[ a,l a,l ] y(R 1
(19)
where « and v are real. Given the energy of the
excited state v of an isolated molecule we obtain

the secular equations for #,(g) and v,(q) for the
exciton state of energy E, (q) from

f‘l’r‘(Rst)[H—Eu(q)]‘I’a(q)dT:Oa (20)

where H is the total Hamiltonian. We shall neglect
any exchange contribution to the matrix elements
resulting from the overlap of electron distribu-
tions of neighboring molecules because the elec-
tron wave functions of the organic molecules of
interest to us are relatively well localized on
each molecule. We obtain thus the secular equa-
tions

ubs@[E, -Eo@)]+ ) ul(@) M cosqR,

v, bt

- Z v%(g) ME singR, =0,
v,b,t

(21)
v @)E, - Eq(q) ]+ ; v%(@)ME” cosqR,

+ X ul(q) MY singR, =0.
VATt

We use the above real representation to simplify
the subsequent machine computation. The matrix
element M4 is defined as

MK =2 jpu(rx,Rw) V@, 73)py(7s, Ry d%r A%y,

(22)

where p,(v,,R;;) is the transition density for the
excited state u of a molecule at site R,; and E, is

the excitation energy of that state. These were
calculated using the extended Pariser-Parr-Pople
method and parameters as described in Refs. 17
and 18. The factor of 2 arises from the assumed
singlet nature of the excited state'® and V(r,,7,)
is the interaction between an electron at », in the
molecule at site R, ; and an electron at r, in the
molecule at site R, ;. Using standard matrix-dia-
gonalization techniques we obtain from Eqgs. (21)
the exciton-band energies E,(¢q) and the coeffici-
ents u,(q) and v,(q) which describe the exciton
states.

For the system illustrated in Fig. 1 one finds
a dispersion curve for E,(q) of the general form
shown in Fig. 3. In this case with four polarizable
groups per unit cell each excited state of an in-
dividual ligand gives rise to four exciton bands.
Due to the high symmetry of the structure some
of these are degenerate or near degenerate as
shown.

V. ELECTRON-EXCITON COUPLING PARAMETER

The electron-exciton coupling parameter in Eq.
(17) has the form Q,(q9)=(1,9,k —¢q|V|0, k), which
corresponds to the scattering of an electron from
k to k - g with the creation of an exciton of wave
vector ¢ and band index a. We use the tight-bind-
ing approximation for the electron states on the
spine

ou(r) = 7117 Z,: o(r —=R;)e' i, (23)

where ¢(r —R;) is an atomic orbital located at
site R;. For simplicity we assume one atom per
unit cell on the spine and neglect the overlap of
atomic orbitals between neighboring cells. Our
matrix element @ is thus given by

Qa(CI)=Nﬁ}§ sz; o*(r, =R;) p(r, - Ry)e'FEn-C-OR 1V (r ) 2 [%2(q) + iv2(q)) e Rt WX (R ;¥ o d 37, d3T,

m,l,v
(24)
where ¥, is the ground state of the array of polarizable molecules.
Using the assumption of zero differential overlap?® and the orthogonality of the molecular orbitals on
different molecules we find for @,
1 ; .
@@= | NG =R PV, 70e s 3 (@) + 0@ x5 Rom) YolBo) 47,077 (25)
m,1,v
Using [see Eq. (10) of Ref. 20],
fx;,*(R,,.,) YoRmy) %73 d%r,...=V2 p,(ry,Rm)), (26)

and the invariance of V(r ,7r,) under a translation of both », and r, by a unit cell, and setting R; =R +R;, we
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obtain finally that

Qa(q)=(2/N)‘/2L}‘: o B VO, ro)ul(@)-ivi(q)] e Ftp (ry, Ry)dor, dr, . (27

The terms uZ,(¢) and v%(q) are the normaliza-
tion terms and fix the phase of the contributions
from the dyes at each site, ! within the unit cell.
The exponential term e**®¢ defines the phase rela-
tionship of the transition densities of dyes in dif-
ferent unit cells. The factor v2 | ¢(r,)PV(r7,)
Xp,(r,,R;;) represents the interaction between an
electron on the spine and the transition charge
V2 p(r,,R;,) at 7, of a dye at site, [ in unit cell ¢.
For 7, and 7, in the same unit cell for the struc-
ture illustrated in Fig. 1 this term yields a con-
tribution of about 1 eV/dye as can be estimated
from Fig. 6.

Because the interaction between | ¢(r,)F and
p(r,R;,;) (i.e., the electron at site 7, in the con-
ductive system and the transition density on the
dye at site R, ,) falls off as a dipole interaction
with distance (r, -7,), one can truncate the sum
over the sites after a small number of terms with-
out a serious error. The finite sums can then be
done easily on a computer.

In Fig. 4 the typical dependence of | Q,(¢)? upon
q is illustrated for a mode a which couples most
strongly to the spine. Its most distinctive charac-
teristic is the sharp fall off in |Q, (¢)? with increas-
ing g. In this it differs in an essential way from
the phonon-electron interaction. In conventional
superconductor the electron-ion interaction is
strongly screened and this gives the phonon-elec-
tron interaction a very short-range character.
For this reason the phonon-electron coupling con-
stant is only weakly dependent upon momentum.
On the other hand, in our proposed exciton sys-

ENERGY (eV)
n
T

1 1 1 1 1 ' 1 1 ' J

(0} w/a

FIG. 3. Calculated exciton-band energies for the
structure of Fig. 2.

-

tem the bulky polarizable ligands make it impossi-
ble for the charges in the ligands to be very close
to the charges in the spine and this together with
reduced screening in such filamentary compounds
makes the exciton-electron interaction one of long
range. The drop off in |Q,(q)f® occurs at values of
g~1/b, where b is of the order of the distance of
the nearest terminal group of the dye from the
spine. We shall see that this strong momentum
dependence of | Q,(¢)? plays an important role in
the structural stability of the proposed system
and in reducing vertex corrections to the coupling
constant.

VI. CALCULATION OF THE COULOMB INTERACTION

The bare Coulomb interaction between the elec-
trons in the conductive spine is treated in the tight-
binding approximation with the assumption of zero
differential overlap. In this case the Coulomb in-
teraction is represented by the parameters v,
which correspond to the interaction between elec-
trons on two atoms on the spine separated by a
distance 7, =na, where a is the interatomic spac-
ing in the spine. Of particular importance is the
parameter y, which measures the Coulomb inter-
action between two electrons on the same atom.
This parameter may be evaluated from the ioniza-
tion energy I, and the affinity A of the atoms on
the spine,?!

Jata)|f ev)?

@®

T T T T T T T T T

D
T

ol 1

1rl/a 2w/a *
q

FIG. 4. Calculated electron-exciton interaction |Q (g)|2
as a function of momentum transfer gq.



Yo=I1-4A. (28)

For the case of platinum 7 =8.88 eV and A =2.85
eV, giving y,=6.03 eV. This value of A was de-
rived using Pauling’s relation? between the work
function ¢ of a metal and its electronegativity x,
¢=2.2Tx +0.3 (eV), and his expression for the aver-
age of the ionization energy and electron affinity,
(I +A)/5.36=x. The above values were obtained
from properties of metallic platinum, but we ex-
pect them to give a rough estimate of the proper-
ties of the metal atoms of the chain. For simplic-
ity, we use the Nishimoto-Mataga®® expression
for the parameters y,

Yn=€/(r,+b). (29)

This defines a characteristic length b, which is
the effective “distance” between two electron
clouds on one and the same atom. From the above
value of y, we get for platinum 5 =2.4 A.

The bare interaction is modified by the screen-
ing of the electrons in the same filament and in
neighboring filaments. In addition, it is also
screened by the dielectric constant of the sur-
rounding organic medium. Let us first consider
the first of these two contributions to screening.
Davis® has calculated the screening of the Cou-
lomb field in filamentary compounds such as KCP
[K,Pt(CN),Br,, - H,0], using the Thomas-Fermi
approximation. He found that the screening was
approximately isotropic, but with a screening con-
stant about ten times that of platinum metal. Our
compounds are closely similar to KCP except that
the ligands are larger than in KCP. We use his
approximate expression to obtain the screened
parameters y,

Yn=€*exp[- A, +b)]/(r, +b), (30)

with A =0.14 A-'. The Fourier transform of the
screened Coulomb interaction is

N1
V(g)=y,+2 t_; Yn €OS(q7,) (31)

where N is the number (odd, for simplicity) of
atoms in the chain. Equation (31) is used to com-
pute V(q) for sufficiently small g, such that the
wavelength exceeds the interatomic distance. The
higher momentum components are obtained from
the Fourier integral

_2¢ J’L/z cos(gr)e-2" +2)
0

vig) a r+b

ar, (32)
where the set of the interaction parameters v, at
the discrete points 7, are replaced by a continuous
interaction. The parameter b is modified to b to
correct for the error made, in particular for
small », by the transition from the discrete to
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the continuous representation. The value of b is
adjusted so that for small g Eq. (32) gives the
same result as Eq. (30). In our case b=1.8 A.
The function V(g) obtained in this manner is
plotted in Fig. 5 (upper curve). We assume that
the unperturbed interaction V,(q), which appears
in Egs. (12) and (13) already contains the screen-
ing effect of the conducting electrons in all the
filaments.

Let us now discuss the screening effects of the
organic medium. The interaction of the spine
electrons with the low-lying highly polarizable
states of the dyelike ligands was singled out in
Eq. (12) and is referred to as the exciton interac-
tion. There still remains the interaction with the
higher excited states. In the cyanine dyes these
states lie at substantially higher energies (5-15
eV) and are well separated from the low-lying
states (2—4 eV). In view of this separation it is
convenient to include the interaction with the high-
er excitations in the Coulomb part of the interac-
tion kernel, because they simply contribute to the
overall static dielectric constant, while the inter-
action with the low-lying states is treated dynami-
cally in the exciton part of the kernel, exactly as
the electron-phonon interaction in conventional
superconductors. Thus, V, p. in Eq. (13) is the
spectral density of the electron-electron interac-
tion due to the high excitations of the organic li-
gands, namely,

Vol@)po(g, w) = EZE) 1Q=(@)FO(E - w), (33)

where E_, is the energy of the lowest exciton band.

UPPER CURVE : TF SCREENING

A=0.14
s a=3.4 (LATTICE CONSTANT)
b=24
6 LOWER CURVE : WITH HIGHER
EXCITATIONS
s (4 PYRIDINE CYANINE DYES /CELL)

vig)(eV)

B S S S T S ST S RN S S S S

(0] T/a " +21r/u

q

FIG. 5. Screened Coulomb interaction calculated using
Thomas-~Fermi screening due to electrons in the same
and neighboring filaments (upper curve), and with the
addition of dielectric screening from the neighboring
organic environment (lower curve).
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The higher excitation bands are generally rela-
tively narrow and one can therefore neglect the
momentum dependence of their energies. One
can also neglect the much lower electron excita-
tion energies £(p). Therefore, Eq. (13) becomes

Up-R)=Vop=-k)-2 3. ‘Q‘(fg—‘k"z. (34)
E>Egy

The contribution of screening by higher excita-
tions to the interaction between electrons at »,
and 7, on the spine can also be conveniently ex-
pressed in coordinate space in the form

Viars=72)= 2, Vol RDIGRLRD VolRS, 72,
T (35)

where R, R} are atomic coordinates of the nth
polarizable ligand and II, is the lowest-order con-
tribution to the proper polarization of the dye
molecule in the static (w=0) approximation [see
Refs. 17 and 18]. The expression in Eq. (34) was
evaluated numerically. It drops off rapidly with
increasing values of (r, —7,) and summation over
11 unit cells was found to give adequate accuracy.
The Fourier transform of this expression, for the
particular organic medium to be described in Sec.
VI, is subtracted from V(q) to give the lower
curve of Fig. 5, which represents the Coulomb
part of the kernel used in subsequent calculations
of T,.

Note that the total Coulomb interaction V(r)

=Vor)+V,. () can be written in the form
_ Vo)
Vc(r) - 1- Vh,x(T)/Vc(T) ’ (36)

the denominator playing the role of an effective di-
electric constant €. We found that the numerical
value of this dielectric constant came out to be of
the order 2, which is close to the value found for
the electronic contribution to € of nonpolar organ-
ic compounds.?® This is reasonable, for the elec-
trons in the spine may be considered as buried in
an organic environment whose dielectric constant
would be of this order of magnitude. It should be
noted that our expression for the electron-exciton
coupling [Eq. (27)] contains a similar reduction in
its effective strength through the 7 screening of
the transition density p, which as described in
Ref. 17 [Eq. (10)] is reduced precisely by a term
of the form (36).

VII. NUMERICAL RESULTS FOR T,

In this section we summarize the results of cal-
culations of T, for a model system consisting of a
spine of platinum atoms, each of which is sur-
rounded by four molecules of the pyridine cyanine

dye lying in the plane perpendicular to the spine,
as shown in Fig. 2. The nitrogen atoms of the dye
are located 2.0 A from the metal atom. The low-
est excited state of the pyridine cyanine molecule
is calculated to be at E =2.7 eV and the transition
density at the various atomic sites, showing a
strong oscillating dipole pattern, is represented
in Fig. 6. The spacing between the platinum atoms
is taken to be 3.4 A, which is sufficiently large to
accomodate parallel layers of the dye molecules.
The platinum atoms are assumed to be oxidized
by the presence of Cl or Br atoms, as in KCP.

Instead of solving the finite-temperature BCS-
like Eq. (13), we shall solve the zero-temperature
equation for the gap

__ (" ak_U(p, k) B(k)
(P(P)—— J:"/a 2 [Ez(k)+¢2(k)]l 2

and use the relation between T, and the gap at T
=0.

ch=3'5¢(kF)T=0’ (38)

(37

where k is Boltzman’s constant. This relation is
found emprically to be very well satisfied for weak
coupling superconductors.?® Due to the reflection
symmetry in a plane parallel to the chains, we
have g(k) = g('_ k)’ U(p) k) =U(—P, - k)y which im-
plies ¢(k)=¢(-k), so Eq. (37) may be written as

B -1 /o (k)
(b(P)— 4_,”' j; dk [ﬁz(k)+¢2(k)]l72

x[U,(p, k) +U,(p, k)], (39)
where
) 21Q(p +R)P
Us(p, B =V P +k) = Fp v+ E(p) [+ 12N’
(40)
) 2Q(p - k)P
Ualps F)= V(b = k) = 5 Ty T BRI TEGR
(41)
-0.0364 N—-0.0647
-0.0467 -0.274
-0.0506 \—(-0.0562
0.000
0.0506 00562
0.0467 0.0274
0.0364 N— 00647

PYRIDINE CYANINE

FIG. 6. Linear combination of atomic orbitals calcu-
lated values of the transition density for the principal
low-lying absorption band for the pyridine cyanine.
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The calculation of E(q), |Q(q)P, and V(g) was de-
scribed in the preceding sections and the results
for the system under consideration are plotted in
Figs. 3, 4, and 5. It remains to specify the con-
duction electron’s excitation energies £(p). We
performed calculations for a tight-binding elec-
tron band

E(p)=%Eo[cos(api‘)_cos(ap)] ] (42)
and for a free-electron band
£(p)=a(p® -p%) . (43)

The parameters for the tight-binding case were
takenfrom the d,2 band calculations of Arbarbanel®’
and Whitmore?® on Pt compounds of the unoxidized
Pt square planar structures. These calculations
give a value for the bandwidth E% in the range 1-
2 eV at a lattice constant of 3.4 A.

Zeller®® has shown from optical data that in the
oxidized salt KCP the electrons behave as if they
are in a simple parabolic band of total width 17
eV extending from £ =0 to 2n/a. This corresponds
to an energy of 4.25 eV at the first zone boundary.
In this case the metal-metal distance is 2.88 A.

If in our case, where we have a metal-metal dis-
tance of 3.4 f\, a similar parabolic band could
occur then we estimate from the variation of the
bandwidth with distance obtained by Whitmore that
this parabolic band would be about 8.5 eV in width.
Thus a =8.5(a/27)? eV A2,

The transition temperature T, depends on two
quantities: the strength of the electron-exciton
interaction and the density of states at the Fermi
energy. The first quantity, which can be roughly
characterized by the value of U(py,pr) determines
whether or not one gets a superconducting transi-
tion. The value of T, is then strongly influenced
by the density of states N(0). Strictly speaking,
such a separation of these two factors is not ex-
act because the electron-exciton interaction itself
depends on the electron band and hence on N(0).
However, this dependence is much weaker than
the dependence of T, on £(p) in Eq. (33). The
electron-exciton interaction | Q(q)P? was calculated
for a tight-binding electron band. The bandwidth
was taken as 3.0 eV and the Fermi momentum as
2(n/a), as it is in KCP. With this |Q(g)? we have
calculated T, for several alternative forms of
£(p). The results for typical parameters are sum-
marized in Table I. The changes in T, follow the
changes in N(0). The gap function for the tight-
binding case with E;=3.0 is shown in Fig. 7 for
kp=%n/a) and kp=:(1/a).

In addition, we computed the exciton and Cou-
lomb interaction for a configuration with two dyes
per unit cell instead of four. We also considered
a configuration where the polarizable dyes of Fig.

TABLE I. Calculated transition temperatures T,, for
various values of the bandwidth E;, and Fermi momen-
tum % .

E,? (eV) kg (a/m) T, (°K)

Tight- 2.0 % 1282
binding 5

band 3.0 € 946

4.0 3 128

3.0 1 186

Free- 2.1 2 538
electron 5

band 3.5 © 129

4.2 2 15

2.1 3 844

2 For the free electron band: E,=a(n/a)?, the energy
at the Brillouin-zone boundary.

2 were moved a little further away from the spine.
They were moved so that the nitrogen atoms of
the terminal groups of the dyes were at a distance
of 3 A from the platinum atom instead of at 2 A.
In both of these cases the kernel U(p, k) was found
to be positive everywhere and no superconducting
solution was found. This shows how important it
is to have the excitonic medium in essentially
atomic contact with the conductive spine and filling
and whole region around it. Because of this it
appears most unlikely that excitonic superconduc-
tivity could occur in a system like the tetracyano-
quinodimethane (TCNQ) salts. Because in these
the conduction electrons are distributed over a
rather large molecule and therefore would not be
at an average distance of less than 3 A from any
polarizable neighbors.

0.03

-0.0I
-0.02

¢ (eV)

FIG. 7. Plot of the calculated superconducting gap
function for the proposed excitonic superconductor for
two values of the Fermi momentum & corresponding to
a half filled and % filled bands.
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VIII. DISCUSSION

In this paper we present calculations which were
performed to check whether the exciton mediated
interaction could be strong enough to overcome
the Coulomb repulsion and lead to high-tempera-
ture superconductivity. We saw that this was the
case of the particular system considered here.
We believe that the overall procedure adopted
above to calculate U(p, k) is fairly reliable. This
belief is supported by the success of the general
method used in computing the excitation energies
and the oscillator strengths for single dye mole-
cules, in reasonable agreement with experiment.3°
This same method should give reliable values for
the excitonic properties. The spatial separation
between the spine electrons and the exciton medi-
um allows us to neglect the exchange interaction
between the electrons in the two regions. This
also adds to the credibility of our procedure, be-
cause it is free of the uncertainties and complica-
tions involved with the inclusion of exchange.
There remains, however, the uncertainties with
regard to the assumptions made on the values of
the various parameters describing the details of
the structure and the interactions. It is therefore
necessary to discuss the sensitivity of the results
to these parameters. It seems to us that the quan-
tity which is the hardest to estimate is the Cou-
lomb interaction. We have therefore investigated
the effect of possible changes in V(¢q) for low ¢
on T.. For example, if we have underestimated
V{(g) for low ¢ by 2.0 eV, then T, for the case of
the tight-binding band with E;,=3.0 eV and kj
=%(n/a) would drop from 944 to 102 °K.

Of particular note is the extreme sensitivity of
T, to the distance between the excitonic system
and the spine. Movement of the dyelike structure
from 2 to 3 A from the spine destroys the super-
conductivity. In addition the calculation of two
dyes per unit cell likewise shows that T, is re-
duced to a negligible value. Together these im-
pose a severe constraint on the acceptable struc-
tures for the excitonic system. Only those struc-
tures with the excitonic system bonded chemically
to the conductive spine and containing three or
four dyes per atom of the spine appear to have
any chance of exhibiting superconductivity due to
the exciton mechanism. This appears to rule out
excitonic superconductivity in systems of higher
dimensionality unless one can obtain a comparable
density of the polarizable medium in intimate con-
tact with the conductive system. No scheme has
been devised in these two- or three-dimensional
systems to realize such a high exciton density;
on the contrary, all estimates to date show the
interaction is much too weak to lead to supercon-

ductivity.3!:32

Our calculation shows that for the very special
system considered above the interactions do ap-
pear to be strong enough to lead to superconduc-
tivity at high temperatures. However, the system
is quasi-one-dimensional or at least filamentary,
and as such is subject to certain instabilities and
to the effects of fluctuations. In addition it is de-
signed to use a nonphonon mechanism, different
from that of known superconductors. In attempt-
ing to extrapolate and make predictions beyond
the known area of validity of the BCS theory as
we are attempting to do, these, and problems
which are unique to the exciton mechanism, need
to be considered.

First, our calculation is a mean-field calcula-
tion and has not considered the effects of fluctua-
tions. However, it is known®® that a small degree
of interchain coupling is sufficient to bring the
actual transition temperature close to the mean-
field value. Moreover, we are not claiming any
great precision for the accuracy of the calculated
values of T, but seek only to point out that for
these systems one is getting into an interesting
region where some manifestation of superconduc-
tivity or at least of superconducting fluctuations
can be expected. The bulk properties of these
compounds would clearly depend rather strongly
on material properties such as the strand lengths,
the degree of cross-linking of the filaments, etc.,
which affect the fluctuation amplitudes. We feel
however, that it would be premature to attempt to
estimate these effects at this time.

Problems of a more general nature which we
can address relate to the stability of the system
and to the unique properties of the proposed ex-
citon mechanism. We consider each of these here.

All the properties characteristic of a particular
system are contained in the kernel U(p, ). Of
special significance for the present discussion are
the values of U,(pr,Pr) and U,(p g, pr). Let us de-
fine the interaction parameters g, =N(O)U ,(pg, P r)
and g, =N(O)U,(p#,pr), where N(0) is the density
of states at the Fermi energy. These parameters
measure the static effective interaction between
two spine electrons on opposite sides of the Fermi
surface with momentum transfer ¢ =0 (g,) and ¢q
=2pr (g,). As mentioned before, the basic feature
of the proposed system is the spatial separation
between the electrons in the spine and the exciton-
ic medium which results in electron-exciton cou-
pling constants decreasing rapidly with increasing
momentum. Thus, g, is dominated by the Coulomb
interaction at 2p, and is therefore positive (and
small). Under favorable conditions, as is the
case for the specific system discussed above, g,
may be negative.
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One of the basic properties of one-dimensional
electron systems is that they possess two inherent
instabilities which show up as divergences in the
two-particle vertex function. One of them occurs
in the particle-particle channel (Cooper channel)
and it indicates the onset of superconductivity.

The other divergence occurs in the particle-hole
channel (“zero sound” channel) and it indicates

the onset of the Peierls or Overhauser instabilities
leading to an insulating state with a charge or spin-
density wave. There is a competition between
these instabilities and any discussion of a phase
transition in such systems should treat them si-
multaneously. This was first done in the mean-
field approximation by Bychkov ef al.3* who found
that in the logarithmic approximation 7,=T, (Tp—
transition temperature to the Peierls state). Re-
cently, there has been extensive work on this prob-
lem which goes beyond mean-field theory.®® Our
present understanding of the problem may be sum-
marized as follows. Each system is represented
by a point in the (g,,g,) plane, where g, and g,

are the parameters defined above. In the upper
half plane (g, >0) corresponding to our case,

every point to the left of the line g, =2g, describes
a system with a superconducting ground state.

The typical electron-exciton systems discussed
here are indeed characterized by values of g,, g,
to the left of and quite remote from this line. This
assures us that the superconducting instability will
dominate and for this reason, we feel that we are
justified in treating this instability separately as
is done in the present paper.

We should, however, point out that the interac-
tion of the conducting electrons with the lattice
vibrations of the spine might lead to a doubling of
the period and consequently to a gap in the single
electron spectrum. In this case it is still possi-
ble to get superconductivity provided that the at-
traction induced by the excitons is sufficiently
strong so that it pays to create Cooper pairs above
the gap. This was discussed in Ref. 1 and the
argument applies to our case because the pairing
interaction and the possible gap in the single-par-
ticle spectrum result from different mechanisms.

The formulation of the theory of superconductiv-
ity, both in the weak and strong coupling regimes,
depends on the validity of Migdal’s theorem3®
which asserts that vertex corrections are small
and may be neglected. The lowest-order correc-
tion to the electron-phonon vertex is shown in Fig.
8. For an incoming phonon of a phase velocity
w/q, much smaller than the Fermi velocity v,
this correction is of the order of w,/Er=10-2.
Most of the phonons involved in conventional super-
conductivity have momentum g =p, and, therefore,
a very small phase velocity. This is the basis of

p

FIG. 8. First vertex correction to the Migdal approxi-
mation which we show is small for the particular model
proposed here.

Migdal’s theorem. One of the essential differences
between the phonon mechanism of superconductiv-
ity and the model discussed here is that in the
present case only excitons with small momentum,
and hence phase velocities much greater than vy
are involved in the conjectured superconducting
transition. It was shown by Engelsburg and
Schrieffer®” that for phonons with a high phase
velocity the vertex correction in Fig. 8 is of the
order of g2N(0)/wp, where g is the electron-pho-
non coupling constant. This is a crude estimate
of A and can be of the order of unity for strong
coupling superconductors. However, this result
was obtained assuming that g? is momentum in-
dependent. This is certainly not the case in our
model, since the coupling constant @(q) is strong-
ly peaked around ¢ =0. Assuming that Q(¢q) is con-
stant for g<g, is an average width [of the order of
s(n/a)] of Q(q), we find that the lowest-order ver-
tex correction is of the order of [| Q3 N(0)/E]

X (AE/E), where E is a typical exciton energy

and AE ~ £(pr+4q.). In our case, |Q*N(0)/E cor-
responding to A is about 0.3 and this is further re-
duced by AE/E ~0.09-0.18, to yield a net correc-
tion of order 0.06. Thus, the strong momentum
dependence of the electron-exciton interaction,
which as mentioned previously is due to the se-
paration between the electrons in the spine and

the excitons, is responsible for strongly reduced
vertex corrections. We wish to point out that it

is not so in some other models proposed for the
realization of the exciton mechanism of super-
conductivity. For example, there has been exten-
sive discussion®® of the possibility of pairing in
the s band of a transition metal induced by the in-
teraction with d electrons. It is not clear that the
vertex corrections in this case are small. Another
model where this is expected to pose a difficulty
is the model proposed by Allender, Bray, and
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Bardeen.?® These authors consider a thin metall-
ic film coated on a semiconductor with a high di-
electric constant. The electrons of the metal
spend part of their time in the semiconducting
region where they interact with electron excita-
tions across the semiconducting gap.

In addition, in both the above models a strict
spatial separation is not maintained between the
electrons of the conductive system and those of
the exciton system. This results in certain ex-
change contributions, which are expected to re-
duce substantially the effective coupling constant
between the two system. In view of the delicate
balance between the Coulomb repulsion and the
exciton attraction this reduction of the latter could
be disastrous. The importance of these exchanges
term was pointed out by one of us previously.*°

In conclusion, we believe that we have presented
a plausible case for the possibility of the exciton
mechanism of superconductivity in the particular
model discussed here. Of course, it may turn out,
once such systems are made, that they will not be
superconducting. If that should be the case, it will
happen for reasons which we cannot anticipate at
present. It may also turn out that it is impossible

to make systems which meet the requirements
specified here. Matthias*! believes that nature,
as a matter of principle, conspires against high-
temperature superconductivity. He argues that
whenever there is good reason to believe that a
particular compound will have a high T, then
some instability will interfere and prevent it.

The worst instability that can occur is that which
makes it impossible even to make the material.
There is ample empirical evidence in the field of
conventional superconductors to support this point
of view. In conventional superconductors, how-
ever, high transition temperatures are obtained
when the coupling constant A is large, whereas is
our case A is relatively small and the high T,
arises from the preexponential factor. Our sys-
tem may thus be less subject to such a limitation
than conventional high T, superconductors. We
are thus talking about a completely different re-
gime and we feel that in view of the general argu-
ments and the detailed calculations presented
above, it is worth the effort to try and synthesize
such systems as proposed here. We are saying it
without underestimating the chemical difficulties
and the problems posed by this goal.

*Supported in part by the Binational Fund, National
Aeronautical and Space Agency and National Science
Foundation.
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