# SuperGrid As SuperTie

Paul M. Grant Visiting Scholar in Applied Physics, Stanford University EPRI Science Fellow (*retired*) IBM Research Staff Member Emeritus Principal, W2AGZ Technologies <u>w2agz@pacbell.net</u> www.w2agz.com

Steve Eckroad Project Manager, EPRI Superconductivity Destinations 122 seckroad@epri.com

6th Annual EPRI Superconductivity Conference Hosted by American Electric Power & Southwire, Inc. 13 - 14 September 2006, Columbus, OH

## Scientific American, July 2006



Superconducting Lines for the Transmission of Large Amounts of Power over Great Distances

#### Garwin-Matisoo Revisited 40 Years Later!

Paul M. Grant Visiting Scholar in Applied Physics, Stanford University EPRI Science Fellow (*retired*) IBM Research Staff Member Emeritus Principal, W2AGZ Technologies <u>w2agz@pacbell.net</u> www.w2agz.com

Oral Session: Power Cable – 1 Applied Superconductivity Conference 2006 10:30 AM, Monday 28 August 2006 Seattle, WA

#### Superconducting Lines for the Transmission of Large Amounts of Electrical Power over Great Distances

R. L. GARWIN AND J. MATISOO

Submitted 24 June 1966 PROCEEDINGS OF THE IEEE, VOL. 55, NO. 4, APRIL 1967

Rationale: Huge growth in generation and consumption in the 1950s; cost of transportation of coal; necessity to locate coal and nuke plants far from load centers.

Furthermore, the utilities have recently become aware of the advantages of power pooling. By tying together formerly independent power systems they can save in reserve capacity (particularly if the systems are in different regions of the country), because peak loads, for example, occur at different times of day, or in different seasons. To take advantage of these possible economies, facilities must exist for the transmission of very large blocks of electrical energy over long distances at reasonable cost.



#### Specs

- LHe cooled
- $Nb_3Sn (T_c = 18 \text{ K})$ 
  - $J_{\rm C} = 200 \text{ kA/cm}^2$
  - H\* = 10 T
- Capacity = 100 GW
  - +/- 100 kV dc
  - 500 kA
- Length = 1000 km

# G-M Engineering Economy - Yesterday & Today -

Wire Cost is 68% of Total

VARIOUS COMPONENT COSTS OF A 1000 KM, NB-SN CABLE IN 1966 AND SW

| Item                             | Description/Quantity                                                             | 1966 Cost (M\$) | 2006 Cost (M\$)* |  |
|----------------------------------|----------------------------------------------------------------------------------|-----------------|------------------|--|
| Superconductor                   | $10^4$ Tons Nb <sub>3</sub> Sn                                                   | 550             | 3405             |  |
| Line Refrigeration               | 0.5 M\$ for 1 kW LHe<br>station every 20 km                                      | 25              | 155              |  |
| <b>End-Station Refrigeration</b> | 10 kW each                                                                       | 5               | 31               |  |
| Vacuum Pumps                     | \$500 per station (2000)                                                         | 1               | 6                |  |
| Fabricated Metal                 | \$1/lb, linear line weight<br>                                                   | 20              | 124              |  |
| Concrete                         | tic !<br>yd <sup>3</sup> for a total volume<br>or $5 \text{ yd}^2$ times 1000 km | 5               | 31               |  |
| ac/dc Converters                 | Thyristors at \$1/kW                                                             | 200             | 1238             |  |
| Total:                           |                                                                                  | 806             | 4990             |  |
| *CPI Factor = 6.19               | ~ 500 M\$/10                                                                     | GW/1000 km      |                  |  |

## "Two Californias"





| SCDC SUPERTIE CABLE                        | DESIGN AND PERFOR | RMANCE PARAMETERS          |
|--------------------------------------------|-------------------|----------------------------|
| Item                                       | Value/Quantity    | Units                      |
| HTSC Tape Parameters                       |                   |                            |
| (77 K, 0.3 T)                              |                   |                            |
| - Critical Current Density, J <sub>C</sub> | 15,000            | A/cm <sup>2</sup>          |
| - Tape Critical Current, I <sub>C</sub>    | 1 <i>5</i> 0      | A/tape                     |
| - Cost/Performance                         | 50                | \$/(kA×m)                  |
| - Width                                    | 0.4               | cm                         |
| - Thickness                                | 0.025             | cm                         |
| - Single Tape Length                       | 800               | m                          |
| - Integration "wasteage"                   | 5                 | %                          |
| - Joint Resistance                         | 0.92              | mW                         |
| - I <sup>2</sup> R Dissipation per Joint   | 0.8               | mW/m                       |
| SuperTie SCDC Cable                        |                   |                            |
| Parameters and Performance                 |                   |                            |
| - Overall Length                           | 5000              | km                         |
| - Number of Conductors*                    | 2                 | 1 per pole                 |
| - Conductor Annular Radius                 | 8.75              | ~ 10 000 M\$/10 GW/1000 km |
| - Maximum Power                            | 10                |                            |
| - dc Voltage                               | 50                | (20× G-IVI !)              |
| - dc Amperage                              | 100               | kA                         |
| - Field at Conductor Surface               | 0.23              | Т Т                        |
| - Conductor X-Section Area                 | 6.62 /            | $cm^2$                     |
| - # HTSC Tapes/X-Section                   | 667 🖊             |                            |
| - Total Tape Length/Pole                   | 3,475,600 /       | km per Conductor-Pole      |
| - Total # Joints per Pole                  | 4,345,000         | -                          |
| - Power Lost in Joints/Pole                | 40                | kW                         |
| - HTSC Tape Cost per Pole                  | 26.3              | B\$                        |

# Hotel California, 8 January 2006



## "Twin Californias"



## Current Harmonics for "Twin Californias" Diurnal Trading



# "Twin California" Trading Losses

| Harmonic, n | I <sub>n</sub> (kA) | f (μHz) | W <sub>H</sub> (kW/5000<br>km) |  |  |
|-------------|---------------------|---------|--------------------------------|--|--|
| 1           | 12.4                | 11.6    | 1.8                            |  |  |
| 2           | 12.8                | 23.2    | 3.8                            |  |  |
| 3           | 8.31                | 34.7    | 2.4                            |  |  |
| 4           | 3.67                | 46.3    | 6.2                            |  |  |
|             |                     | Total   | 8.7                            |  |  |



# "Sanity Check"

- Worst Case: Assume a "toleration loss" no larger than 1 W/m, then the entire SuperTie could be reversed in only 2 hours.
- The "fastest" change would be ~ 10 A/s between 5 and 6 PM EST. Compare with 1% ripple on 100 kA at the 6<sup>th</sup> harmonic of 60 Hz which is 720,000 A/s!

# 5000 km SuperTie Economics

#### Base Assumption: C/P "Gen X" = \$50/kA×m

| Cost of Electricity<br>(\$/kWh) | Line Losses<br>in<br>Conventional<br>Transmission<br>(%) | Annual Value<br>of Losses on<br>10 GW<br>Transmission<br>Line @ 50%<br>Capacity (M\$) | Additional<br>Capital Costs<br>for HTSC and<br>Refrigeration<br>(M\$) | FRB<br>Discount<br>Rate (%) | Period<br>for ROI<br>(Years) |
|---------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|------------------------------|
| 0.05                            | 5 %                                                      | 110                                                                                   | 52,574                                                                | 5.5 %                       | 62                           |

"Deregulated Electricity" will <u>not</u> underwrite this ROI, only a "public interest" investment analogous to the Interstate Highway system makes sense

# Possible SuperTie Enablers

- Active public policy driving energy efficiency
- Carbon tax
- Tariff revenue from IPPs accruing from massive diurnal/inter-RTO power transactions
- Unique Value-added <u>Not Possible</u> with other/alternate cable technologies
  Hydrogen !