

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Advanced Transmission Technologies

Paul M. Grant W2AGZ Technologies Visiting Scholar, Applied Physics, Stanford EPRI Science Fellow (retired) IBM Research Staff Member Emeritus http://www.w2aqz.com

http://www.w2agz.com/pes07.htm

23-25 January 2007 Oglethorpe Power, Atlanta, GA Advanced Transmission Technologies

- Power Electronics
 - EE 101
 - Applications to FACTS, HVDC and Custom Power
- Superconductivity in Power Applications
 - Background Physics
 - Transformers, FCLs, Rotating Machinery
- The SuperGrid Vision
 - Nuclear + Hydrogen + Superconductivity

Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The Path of Least Resistance

A microcosm of the American Grid

If $R_1 > R_2$, Then $I_2 > I_1$ (Kirchoff's Law)

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Those Magnetic Moments

$$\begin{aligned} \nabla \cdot \mathbf{E} &= 4\pi\rho \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \end{aligned} \qquad \text{Maxwell's Equations} \\ \nabla \times \mathbf{B} &= \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} + \frac{4\pi}{c} \mathbf{J} \end{aligned}$$

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The Genius of Nicola Tesla: Alternating Current

The Polyphase ac System: Invented by Nicola Tesla to enable his concept of synchronous motors and generators, now used throughout the electrified world.

23-25 January 2007 Oglethorpe Power, Atlanta, GA ac and dc "The Story"

- Edison vs. Tesla
- ac won because ac can be transmitted with lower losses at high voltages, reducing I²R dissipation
- dc is difficult to transform from a low voltage to a high voltage and back
- But maybe Edison won in the long run

23-25 January 2007 Oglethorpe Power, Atlanta, GA Cables & Lines

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Mechanical/Electrical Analogies

<u>Mechanical</u>	<u>Electrical</u>
Force/Pressure (F, P)	Voltage (V)
Velocity (v)	Current (A)
Friction (f)	Resistance (R)
Compliance (k)	Capacitance (C) (~ 1/k)
Inertia (Mass, m)	Inductance (L)
F = fv	V = IR (Ohm's Law)
P = Fv	$P = VI = I^2R = V^2/R$

23-25 January 2007 Oglethorpe Power, Atlanta, GA Physics of Power Flow

- <u>dc transmission</u> limited by V and R
- <u>ac transmission</u> limited by V and R and also the energy stored and released by associated electric (C) and magnetic (L) fields
 - Capacitive reactance limits length of underground cables to 20 30 miles
 - Inductive reactance and radiation limits length of overhead lines to $\lambda/4$ = 775 miles at 60 Hz

23-25 January 2007 Oglethorpe Power, Atlanta, GA

High Voltage dc

"Thyratrons"

Anode Porcelains & Mercury Cathode Tank

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Thyristors, etc.

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Application: BTB in Japan

23-25 January 2007 Oglethorpe Power, Atlanta, GA

North American HVDC

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Specifications

2-1000 MW HVDC Bipolar Circuits

- Circuit 1: 130 miles, Greene County \rightarrow Bronx County
- Circuit 2: 140 miles, Albany County \rightarrow New York County
- Each Circuit: +/- 500 kV, 1000 A Bipolar (2 cables ea.)

Financials

<u>\$750 M (\$400 M "VC", \$350 M "Futures")</u>

Loan Payment (4%, 40 yrs, 750 M\$) =	35 M\$/yr
Labor, Overhead, Maintenance =	5 M\$/yr
Tariff =	0.5 \$/kWh
Profit (NOI) @ 50% Capacity =	4 M\$/yr

48 M\$/y

- Profit (NOI) @ 50% Capacity =
- Profit (NOI) @ Full Capacity =

Why didn't it go forward?

23-25 January 2007 Oglethorpe Power, Atlanta, GA

HVDC Cable Cross-Section

Pirelli (Prysmian)

Energy Cables

\$190 M

Sayerville, NJ \rightarrow Levittown LI, NY

- 600 MW (+/- 250 kV, 1200 A)
- 65 miles (105 km)
- \$400 M
- 2007

23-25 January 2007 Oglethorpe Power, Atlanta, GA

NERC Interconnects

<u>Source:</u> DOE 2006 National Electric Transmission Study

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Projected 2008 Congested Paths in the Eastern Interconnection

<u>Source:</u> DOE 2006 National Electric Transmission Study

Paul M. Grant Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

<u>Source:</u> DOE 2006 National Electric Transmission Study

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Real-Life Power Flows

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Chaos on the Grid

23-25 January 2007 Oglethorpe Power, Atlanta, GA

"We are sick and tired of them, and they had better change!"

Chicago Mayor Richard Daley on the August 1999 Blackout

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The Opportunity

23-25 January 2007 Oglethorpe Power, Atlanta, GA

WAMS

Paul M. Grant Advanced Transmission Technologies ABB

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Do It!

- Buzz Words
 - GridWise
 - Intelligrid
 - Self-Healing Grid
 - Brilliant Grid
 - GridWorks
- It's not rocket science!
- It's good old Negative Feedback (Black, 1927)
 - Just like you have in your Bose headphones
 - Simply get rid of the noise
- Why not just do it?

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Fathers of Cryogenics

Jalles Delwar

Dewar

 $\begin{array}{c} CH_4 & 112 \ K \\ O & 90 \\ N_2 & 77 \\ Ne & 27 \\ H_2 & 20 \\ He & 4.2 \end{array}$

Kammerlingh-Onnes

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Models of Electrical Conductivity

The First Idea:

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Models of Electrical Conductivity

The Most Popular:

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Models of Electrical Conductivity

23-25 January 2007 Oglethorpe Power, Atlanta, GA

1911 A Big Surprise!

Thus the mercury at 4.2 K has entered a new state, which, owing to its particular electrical properties, can be called the state of *superconductivity*

H. Kamerlingh-Onnes (1911)

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Magnetic Properties

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Physics of Superconductivity

Electrons Pair Off!

BCS Equation

$$T_{C} = 1.14 \,\theta_{D} \exp(-1/\lambda)$$

$$\theta_{D} = 275 \text{ K},$$

$$\lambda = 0.28,$$

$$\therefore T_{C} = 9.5 \text{ K} \text{ (Niobium)}$$

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Important Numbers in Superconductivity

Transition Temperature, T_c Way below 300 K

Critical Current Density, J_c 10⁻² - 10⁶ A/cm²

Critical Magnetic Field, H_c 10⁻⁴ - 10 T

NB! All these numbers depend on each other.

23-25 January 2007 Oglethorpe Power, Atlanta, GA

 T_C vs. Year: 1911 - 1980

Paul M. Grant Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

MRI & "Big Physics"

Magnetic Resonance Imaging Philips

<u>Tevatron</u> Fermi National Laboratory

23-25 January 2007 Oglethorpe Power, Atlanta, GA

SMES

Superconducting Magnetic Energy Storage

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Superconducting Quantum Interference Device

MagnetoTomaGraphy

23-25 January 2007 Oglethorpe Power, Atlanta, GA

MagnetoCardioGraphy

www.cardiomag.com

Healthy Heart

Ischemic Heart - Early Stages

23-25 January 2007 Oglethorpe Power, Atlanta, GA

MagnetoTomaGraphy

MagnetoEncephloGraphy

Speech Center Pathologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

1986 Another Big Surprise!

Bednorz and Mueller IBM Zuerich, 1986

23-25 January 2007 Oglethorpe Power, Atlanta, GA

1987 "The Prize!"

J. Georg Bednorz, left, and K. Alex Müller after learning they had won the Nobel Prize in physics.

2 Get Nobel for Unlocking Superconductor Secret

23-25 January 2007 Oglethorpe Power, Atlanta, GA

 T_c vs. Year: 1911 - 1999

Paul M. Grant Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Abrikosov Vortex Lattice

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Type II Superconductivity

No More Ohm's Law

23-25 January 2007 Oglethorpe Power, Atlanta, GA

ac Hysteresis

23-25 January 2007 Oglethorpe Power, Atlanta, GA

23-25 January 2007 Oglethorpe Power, Atlanta, GA

HTS OPIT/Ag Tape Generation I

ASC Wire Forming Process

Wire is the Power Engineering commodity

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Wire-to-Cable

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Coated Conductors Generation II Wire

23-25 January 2007 Oglethorpe Power, Atlanta, GA Motors

- 25,000 hp
- Small, Light (1/5 Conventional)
- High Power Density
- Quiet
- Robust

http://www.amsuper.com/navy.htm

23-25 January 2007 Oglethorpe Power, Atlanta, GA Transformers

Waukesha, IGC, ORNL, DOE

23-25 January 2007 Oglethorpe Power, Atlanta, GA

HTS Cables: They're Here!

12,400 Volts 1,250 Amps 3 Phase

Southwire Cable Plant Carrolton, Ga.

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Albany Cable

- 350m long 34.5kV 800A_{rms} 48MVA
- Cold dielectric, 3 phases-in-1 cryostat, stranded copper core design

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Paul M. Grant Advanced Transmission Technologies

AEP Bixby Cable

- Utility Partner = American Electric Power
- Location = Bixby Substation, Columbus, OH
- Voltage = 13.2 kV
- Load Rating = 3.0 kA_{rms} AC; 69 MVA
- Fault Current Rating = 20 kA_{rms}; ~57 kA_{peak}
- Cable Design = Triax
- · Length = 200 meters
- Other Features = Splice

Underground Multiple 90° Bends

In Service August 2006

23-25 January 2007 Oglethorpe Power, Atlanta, GA

LIPA Cable

- Long Island Power Authority Holbrook Substation
- · Electrical Characteristics
 - Design Voltage/Current 138kV/2400A ~ 574MVA
 - Design Fault Current 51,000A @ 12 line cycles (200ms)
- · Physical Characteristics
 - Length ~ 600m
 - HTS Conductor Length ~155km
 - Cold Dielectric Design

Paul M. Grant Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

AMSC TVA SuperVAR

Rating	8 MVAR
Voltage	13.8 kV line to line
Ambient Temp	-30º to +40ºC
Losses	1.7% rating at 8MVA
	Including 50kW 480∨ auxiliary power

23-25 January 2007 Oglethorpe Power, Atlanta, GA

HTSC Utility Market

In the utility/energy market, the applications that appear to value performance attributes of HTS most are Fault Current Limiters and Synchronous Condensers. 10 More Years!

	Utility/Energy Market - Importance of Performance Attributes					
	Small & Light	High Power Density	Low Impedance	High Efficiency	High Field	Overall
Power Cable	•	•	•	•	0	•
Synchronous Condenser	•	•	•	•	•	•
Fault Current Limiter*	•	•	•	•	0	•
Industrial Motor	•	•	•	٠	•	•
Utility Generator	0	0	•	•	•	•
Wind Generator	•	•	•	•	•	•
Transformer	•	•	•	•	0	•

Source: NCI Analysis, see Appendix: Value Propositions
* Fault current limiters also rely on the inherent quench properties of HTS. Weak

NAVIGANT

23-25 January 2007 Oglethorpe Power, Atlanta, GA

AMSC D-VAR

What does the "S" in AMSC now stand for?

- "Orthogonal" to SMES...stores reactive power in an ordinary coil
- Great for intermittent generation...like wind

23-25 January 2007 Oglethorpe Power, Atlanta, GA

3M ACCR Conductor

Properties	Units	Conductors						
Name		477- T16	557- T16	636- T16	795- T16	954- T13	1272- T13	1590- T13
Size	Kcmils	477	557	636	795	954	1272	1590
Diameter	In.	0.86	0.93	0.99	1.11	1.20	1.38	1.54
Weight	Lbs/ft	0.54	0.63	0.72	0.90	1.04	1.39	1.74
Strength	Lbs	19,476	22,743	25,091	31,134	32,758	43,677	54,596
Resistivity (DC @ 20°)	Ohms/ mile	0.1100	0.1569	0.1375	0.1100	0.0933	0.0700	0.0560
Continuous Ampacity @ 210 °C	Amps	1,360	1,505	1,645	1,910	2,130	2,585	3,000
Emergency Ampacity @ 240 °C	Amps	1,460	1,625	1,775	2,060	2,300	2,800	3,260

Al-O Ceramic Fibers ~ 0.073" D

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Sagometer

SAGOMETER™ SYSTEM COMPONENTS

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The 21st Century Energy Challenge

Design a communal energy economy to meet the needs of a densely populated industrialized world that reaches all corners of Planet Earth.

Accomplish this within the highest levels of environmental, esthetic, safe, reliable, efficient and secure engineering practice possible.

...without requiring any new scientific discoveries or breakthroughs!

23-25 January 2007 Oglethorpe Power, Atlanta, GA

"Boundary Conditions"

- Givens
 - Energy Efficiency
 - Recycle Everything
- Off-the-Table: Eco-invasive Power Generation
 - All Fossils (CO₂ -forced climate change)
 - Carbon Sequestration
 - Baseline Renewables
 - Massive "Farms" Wind, Solar, Biomass
- On-the-Table
 - Nuclear Fission Baseline Generation
 - Underground Energy Transmission Corridors
 - Solar Roofs
 - Urban/Agro Biomass

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The Vision Concept

- Nuclear Power can generate both electricity and hydrogen – "Hydricity"
- Hydricity can be distributed in underground pipelines like natural gas
- The infrastructure can take the form of a SuperGrid
- ...or a SuperCity

23-25 January 2007 Oglethorpe Power, Atlanta, GA

<u>The Hydricity</u> <u>SuperCable</u>

Dual Delivery of Hydrogen and Electric Power

Flowing liquid hydrogen or cold
 H₂ gas under pressure delivers
 power and also serves as the
 refrigerant to ...

Enable the transmission of large amounts of electric power losslessly using superconductors

Thermal Insulation Electrical Insulation

 Enclosed in underground tunnel or trench

Advanced Transmission Technologies

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Relative Power Flows

 $P_{sc} = 2|V|JA_{sc}$, where

P_{sc} = Electric power flow V = Voltage to neutral (ground) J = Supercurrent density

 A_{sc} = Cross-sectional area of superconducting annulus

$$P_{H2} = 2(QpvA)_{H2}, \text{ where}$$

$$P_{H2} = Chemical \text{ power flow}$$

$$Q = Gibbs H_2 \text{ oxidation energy (2.46 eV per mol H_2)}$$

$$p = H_2 \text{ Density}$$

$$v = H_2 \text{ Flow Rate}$$

$$A = Cross-sectional area of H_2 cryotube$$

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Electricity (1000 MW) & Hydrogen (500 MW)

Electricity

Power (MW)	Voltage (V)	Current (A)	Critical Current Density (A/cm ²)	Annular Wall Thickness (cm)
1000	+/- 5000	100,000	25,000	0.125

Hydrogen (LH₂, 20 K)

Power (MW)	Inner Pipe Diameter, D _{H2} (cm)	H ₂ Flow Rate (m/sec)	"Equivalent" Current Density (A/cm²)
500	10	3.81	318

23-25 January 2007 Oglethorpe Power, Atlanta, GA

The Hydrogen Economy

- You have to make it, just like electricity
- Electricity can make H_2 , and H_2 can make electricity $(2H_2O \Leftrightarrow 2H_2 + O_2)$
- You have to make a lot of it
- You can make it cold, 419 F (21 K)

P.M. Grant, "Hydrogen lifts off...with a heavy load," Nature 424, 129 (2003)

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Hydrogen for:

- Personal Transportation
- Storage of Electricity
- Industrial Thermal/Chemical Processing
- Residential/Commercial Heating

<u>The Hydricity</u> <u>Economy</u>

Electricity for:

- Just about everything else!

23-25 January 2007 Oglethorpe Power, Atlanta, GA Hydrogen for US Surface Transportation <u>"You have to make a lot of it"</u>

Factoids & Assumptions

Daily consumption of gasoline and diesel by US cars & Trucks	8.6 Billion barrels/day
Effective Otto Cycle Efficiency (Useful conversion to drive chain)	25 %
Water Electrolysis Efficiency (Source Electricity-to-Hydrogen)	80 % (aggressive)
Fuel Cell Efficiency (Onboard Hydrogen-to-Electricity)	80 % (very aggressive)
Conversion/drive chain Efficiency	80 % (nominal)
Additional Electric Generation Plant Capacity for Hydrogen Vehicles	400 GW

Plain Talk about the Electric Power System

23-25 January 2007 Oglethorpe Power, Atlanta, GA Hydrogen for US Surface Transportation: Generation by Renewable Electricity

Land Area Required to Supply by Renewables		
Technology	Area (km²)	Equivalent
Wind	130,000	New York State
Solar	20,000	50% Denmark Death Valley + Mojave
Biomass	271,915	3% USA State of Nevada

Plain Talk about the Electric Power System

23-25 January 2007 Oglethorpe Power, Atlanta, GA

Diablo Canyon & Wind Power "Equivalent"

Paul M. Grant Advanced Transmission Technologies

Paul M. Grant Advanced Transmission Technologies

electricity failed to arrive in New York City, plunging the 10 million inhabitants of the Big Apple—along with 40 million other people throughout the northeastern U.S. and Ontario—into a tense night of darkness.

On the afternoon of August 14, 2003,

Cryogenic, superconducting conduits could be connected into a "SuperGrid" that would simultaneously deliver electrical power and hydrogen fuel

Published in SCIENTIFIC AMERICAN July, 2006

Plain Talk about the Electric Power System

23-25 January 2007 Oglethorpe Power, Atlanta, GA The Energy SuperGrid

Where there is no vision, the people perish... *Proverbs 29:18 (1000 BCE)*

Paul M. Grant Advanced Transmission Technologies