DIALOGUE/360: A SIMPLE APPROACH TO
INTERACTIVE NUMERICAL EXPERIMENTATION
FOR PHYSICAL SCIENTISTS

Paul M. Grant

July 28, 1970

FILE copy
w7 NON CIRCULATING

Yorktown Heights, New York

San Jose, California =
Zurich, Switzerland

2]
3

DIALOGUE/360: A SIMPLE APPROACH TO INTERACTIVE NUMERICAL

EXPERIMENTATION FOR PHYSICAL SCIENTISTS

Paul M. Grant
IBM Research Laboratory
san Jose, California

ABSTRACT: Those aspects of interactive computation attractive to workers in the
physical sciences are identified and discussed. A PL/I-based graphics terminal
package designed to operate on an IBM 2250 Display Unit and attack problems in
"mumerical experimentation' is presented. The package permits the writer of the
basic problem program to communicate with his job merely by calling one of three
subroutines. These subroutines allow him a simple interface for entering data,
outputing answers, and plotting graphical results. Also included are functions for
annotation insertions and performing elementary arithmetic calculations. A typical
numerical problem, that of calculating Faraday rotation in a thin absorbing film,

is used as a vehicle to demonstrate the system.

RJ 734 (#13873)
July 28, 1970
Output devices

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication elsewhere and
has been issued as a Research Report for early dissemination
of its contents. As a courtesy to the intended publisher, it
should not be widely distributed until after the date of outside
publication,

Copies may be requested from:

IBM Thomas J. Watson Research Center
Post Office Box 218

Yorktown Heights, New York 10598

INTRODUCTION

This paper deals with a simple, easy to learn, interactive graphics package
of wide generality designed primarily for use by physical scientists. Probably
the most extensive computer activity engaged in by scientists of all disciplines
entails what we shall call numerical experimentation. By that term we mean
interacting on a time scale comfortable to humans, and usually by trial and error,
with mathematical models and situations considered intractable prior to the advent
of digital computers. This definition would encompass most experimental data
analyses and many theoretical modeling problems, but would rule out, for the time
being at least, applications comparable to ab initio quantum mechanical calculations.
Later in the article we will treat an example of a representative numerical experi-
ment. First of all, however, let us try to identify and define what we feel to be
those aspects possessed by numerical experiments in toto.

(1) Physical insight is usually inhibited by the complexity of the pertinent
equations (often highly non-linear).

(2) Thus one wishes to interact freely with the problem by changing at will
interesting parameters, the effect of whose variation on the result is not immediately
obvious, in the hope of revealing new and unexpected effects.

(3) Although the mathematics involved may be of labyrinthic construction, the
numerical techniques applied frequently make small time demands on present-day
central processing units.

(4) Most scientists will desire that both intermediate and final results be
presented in graphical, rather than tabular, form.

(5) Because many numerical experiments require much trial and error, retention
in hard copy form is necessary only for important results with ready disposability of

failures and intermediate calculations maintained as the usual alternative.

In the section to follow, we apply these reflections to the design of an
interactive system suitable for physical scientists with a modicum of programming
experience. Most of the observations we make have been made before; unfortunately,
it seems, at least to the author, that the approaches usually offered are either too
specific to one area of science to be universally applied, or are so flexible as to
require a level of software sophistication beyond that possessed or desired by the
typical physicist or chemist.

The succeeding sections treat the physical features of the display unit
involved and the formatting of its output screen, a description of the user-invoked
subroutines provided to access the display, an implementation in a typical computer
center, and finally an example numerical experiment. Readers not particularly
interested in the software structure underlying the accessing subroutines may ignore
the discussion of Figs. 5-9 in the appropriate sections and skip the implementation
section as well. On the other hand, these figures should be sufficient to satisfy

those curious as to the actual framework of the package.

NECESSARY ATTRIBUTES OF A TERMINAL SYSTEM FOR NUMERICAL EXPERIMENTATION

In order to provide the freedom of access to computer resources vital to
numerical experimentation, it has proven expedient to develop on-line terminals and
time-sharing operating systems of various types. Whether the terminal shares a CPU
with many others or occupies a partition in a multi-programming environment is
unimportant for our considerations. We will be concerned with the physical features
of the terminal and the programming interface the user must learn. Toward this end,
let us list some of the principal qualities deemed desirable in a numerical
experimentation oriented terminal system.

(1) High-speed graphics capability would seem an absolute necessity. Unfortu-

nately many terminal devices are without this feature; those limited to CRT

alphanumeric displays often lack resolution while those of typewriter design lack

both speed and resolution. Mechanical plotters, on the other hand, possess resolution

but are slow.

(2) Usually only small numbers of messages and results need be presented at a
given time by an interactive terminal system inasmuch as only small amounts can be
absorbed mentally by the operator. Thus sacrifice of output volume for high speed
display of only important factors would be allowable.

(3) On-1line keyboard input of data and commands is an obvious requirement.

(4) The system should grant amnesty to the user for syntax and arithmetical
errors by permitting him to restart his problem from his terminal without having his
entire job aborted.

(5) Hard-copy backup should be available to support graphical and alpha-
numeric terminal output. Thus the user would be able to review his whole temminal
session off-1line if desired.

(6) A "scratchpad'" facility for taking notes and performing simple arithmetic
calculations (analogous to slide rule operations) during the course of the numerical
experiment should be provided.

(7) Creation and editing of source code at the terminal, as well as problem
program execution, although not absolutely necessary, would be highly welcome.

(8) Use of a universal high-level language as the terminal programming medium
is essential. The language should be as mathematically directed as possible yet
allow some manipulation of character variables for logical purposes.

Having now put forth what we believe to be vital criteria for a numerical
experimentation terminal system, let us consider an actual embodiment. The heart of
our system will prove to be three simple subroutines callable by a user-written main
program to perform the functions of writing to, reading from, and plotting on a

high-speed CRT graphics display unit.

THE IBM 2250 GRAPHICS DISPLAY TERMINAL*

The most complete description of the physical and logical characteristics of the
IBM 2250 Display Unit is to be found in the appropriate IBM Systems Manuals. For
the sake of clarity throughout the rest of the paper it will be necessary to describe
a few of its features here. Readers interested in recent papers on interactive
graphics involving this unit are referred to Ref. 1. Also a review of other
presently available graphic terminals and programming support packages may be found
among the proceedings of a recent symposium held at Brunel University, UK.2

The 2250 Display Unit comprises a CRT display, a light pen, an alphanumeric
keyboard, and a set of attention keys. The CRT display consists of an array of
1024 by 1024 addressable points over a 144 in.2 area. The farthest distance between
two adjacent points is thus 0.017 in., sufficiently near the limits of visual acuity
to permit high-resolution plotting. In addition, character generation facilities
provide for displaying 52 lines of alphanumeric text containing 74 characters/line,
or, in other words, 3848 addressable character positions. Vectoring between points
is possible and image regeneration is effected via a 16 Kbyte buffer store.

The alphanumeric keyboard shown in Fig. 1, encompasses the standard EBCDIC
character set. When the keyboard is active, a dash (cursor) appears under the screen
position where the next character to be typed will be displayed. Errors in typing are
corrected by moving the cursor along the line via the BACKSPACE or ADVANCE key and
re-typing the proper characters. Depressing the CONTINUE key and any other character
key allows that character to be continuously repeated as long as the CONTINUE key
is held down. Depressing the JUMP key moves the cursor to some pre-designated area

on the screen. The function of the ALT key will be discussed later on.

*
We point out that the IBM 2250 is typical of several terminals available on

the market today, any of which would serve to treat the problems under discussion.

The attention, or program function, keys, of which there are 32, are used to
initiate I/0 interupts that identify the particular key depressed so that an

appropriate pre-programmed reaction can take place.

SOME FEATURES OF PL/I and GSP

Choosing a programming language suitable for numerical experimentation from among
the several extant tongues involves various trade-offs. Ideally one would like the
language to be mathematically oriented yet permit easy manipulation of non-arithmetic
quantities such as character strings and I/0 operations. Also promise of long life,
widespread usage, inter-system compatibility, and existence of an efficient compiler
would be an extremely valuable trait. It has been the author's experience that data
handling through I/0 devices poses a far more formidable coding problem than the
formulation of the pertinent mathematical algorithm, and any attributes a language
may have to alleviate this situation weigh heavily in its favor for use in numerical
experimentation. For this reason, and the others noted above, we selected PL/I as the
basis for our system. Its algebraic syntax and statement construction is so
similar to Fortran (the most widely used scientific language at present) that those
of its users wishing to convert have won half the battle upon finding the location
of the semicolon symbol on their keyboards.3 In addition, if one is careful,
linkage can be achieved on certain machines between PL/I calling programs and Fortran
subroutine5.4 Furthermore, PL/I, while offering formatted I/0 resembling Fortran,
extends and eases information transfer greatly through its LIST- and DATA-directed
features. Also PL/I is much better adapted to the management of logical and
character string variables.

The standard IBM-supplied interface to the 2250 is GSP (Graphic Subroutine

Package).S This package allows a wide variety of operations to be performed with

the 2250 and, in fact, is in itself much more than we need for our considerations here.

However, it is through a combination of GSP subroutines that we have created the
simple interface which we now wish to discuss and through which the presence of

GSP becomes invisible to the user.

LAYOUT OF THE DISPLAY SCREEN AND DESCRIPTION OF ACCESSING SUBROUTINES

Employing GSP, we partition the area of the 2250 CRT screen into three regions
as shown in Fig. 2. Each region may be accessed by the user-written problem pro-
cedure through use of the sub-procedure indicated. The largest region is reserved
for presentation of standard format graphs 500 by 500 points in size. The next
largest region displays 10 lines of output 74 characters in length while the smallest
region contains one line of input data which is to be entered from the keyboard.

Figure 3 illustrates the overall software organization of the interactive
system. The user-written program runs as an external procedure under control of the
main procedure monitor program GTASK. Up to five problem procedures can be selected
by depressing the appropriate attention key. Each procedure is compiled separately
and is then used by the 0S/360 LINKAGE EDITOR to replace any of five dummy procedures
in GTASK. Within the problem procedure itself, however, the presence of GTASK is
transparent to the writer. The only part of the monitor system the problem procedure
author need recognize consists of the sub-procedures GREAD, GWRITE, and GPLOTS
referred to in Fig. 2 and whose functions will be discussed shortly.

The principal operations of GTASK are summarized by the flow chart of Fig. 4.
Apart from initialization services and task selection, GTASK provides two PL/I
on-units to monitor the problem procedure. One creates an ON CONDITION to furnish
an expedient means for the operator to terminate a particular problem procedure at
any time he is in sub-procedure GREAD, while the other is designed to trap all
syntactic and arithmetic errors occurring in the problem procedure thus allowing the

user to restart his task without being aborted by the Operating System and having to

resubmit his job. The particular problem procedure to be executed is selected by
depressing one of the enabled (illuminated) attention keys. When this is done an
I/0 interrupt is received by GSP subroutine RQATN signifying which attention key
was activated and a GO TO is computed to call the chosen problem procedure from
TASKO1 through TASKOS (these are dummy procedures which the Linkage Editor has
replaced with live problem procedures). The terminal session is ended by pressing
attention key 31.

Let us now consider in some detail each of the three external sub-procedures
which our problem procedure author uses to reference the pertinent display areas of
Fig. 2. Figure 5 describes sub-procedure or subroutine GWRITE. GWRITE has a single
parameter or argument which must be a character string no longer than 74 symbols.
The 2250 area serviced by GWRITE has room for 10 such lines and a call to GWRITE
inserts the present value of the argument into the bottom-most position shifting the
previous occupant along with those above it up one line. The topmost message is, of
course, removed from the screen entirely; however, each call to GWRITE also results
in its argument being written onto the system output device so that hard copy of all
transactions may be eventually obtained. In practice, it has been found that reten-
tion of the most recent 10 lines of output on the screen is sufficient for carrying
out numerical experimentation.

To perform the function of obtaining data for the problem procedure, the user
must invoke sub-procedure GREAD whose flow-chart is contained in Fig. 6. The lowest
line of the 2250 screen (see Fig. 2) is reserved for this purpose. Immediately upon
being called, GREAD (1) places a question mark in the leftmost character position,
(2) places a cursor in the next position so that entries may begin from the
alphanumeric keyboard, and (3) sounds an audible alarm alerting the operator that an
entry is to be made. In addition, GREAD enables attention key O and the alphanumeric

keyboard END key. If the user finds his numerical experiment proceeding poorly, he

may at this time bail out by pressing attention key O thus returning him to GTASK
monitor and yielding the opportunity to restart the same or a different problem
procedure. Most problem procedures will be found to return to GREAD very often
during their operation, hence providing a return option to GTASK from this sub-
procedure appears quite logical. More typically, however, the user will commence
entering data via the alphanumeric keyboard, each character appearing on the bottom
line of the screen as its corresponding key is struck. Up to a total of 73 charac-
ters may be entered this way. When the desired message or data has been typed, the
operator simultaneously depresses the ALT key and the "5'" key (see Fig. 1) thus
activating the END function. GREAD then returns control to the calling problem
procedure passing in its argument or parameter the character string comprising the
contents of the typed-in entry minus the question mark. Experience has shown that
one line at a time allows enough room for the usual amount of data input required by
the problem procedure.

Although GREAD and GWRITE bestow the ability to transfer character string data
to and from the 2250 terminal, it would be extremely advantageous if data conversion
features analogous to FORTRAN FORMAT control or PL/I LIST-DATA-EDIT STREAM I/0 could
somehow be included. It turns out that the user can easily accomplish this for
himself within the problem procedure by employing the STRING I/0 function in PL/I.
That is, PL/I contains an option whereby one can "write" or "read" ("put" or 'get")
to or from a character string variable just as if that variable were an actual
external physical I/O device. Thus, for example, it is possible to use GREAD to
obtain numerical data entered from the alphanumeric keyboard in character string form
and then '"read" this string by LIST-, DATA-, or EDIT-directed STRING I/O as the case
may be. Table I gives an example. Conversely, a similar operation is feasible
using GWRITE for output, namely, one performs a PUT LIST, DATA, or EDIT to a

74-character string variable which is subsequently passed as the argument to GWRITE

and is displayed on the 2250 screen with the desired format conversion. STRING I/0
thus greatly enhances the interactive versatility of GREAD and GWRITE.

The third sub-procedure called by a problem procedure, viz., GPLOTS, creates a
standard format graph in the display region indicated in Fig. 2. The logic of its
argument or parameter list is explained in Table II and its flow diagram given in
Fig. 7. Not shown in Fig. 7 are those provisions for off-line hard copy plotting.

The sign and value of parameter MARK govern the plotting symbol used, whether the

plot appears on the 2250 or is put in direct access storage for later CALCOMP plotting,
and whether the plot is to be overlaid onto a previous plot. When the overlay option
is selected, the x-axis configuration remains unchanged but the y-axis is replaced

with the new one on the screen (for the CALCOMP option, the new y-axis is drawn
slightly to the left of the old one). If XAXIS(1) and/or YAXIS(1) are zero on entry
to GPLOTS, appropriate scale factors are chosen to allow the data to fill the plotting
area; no rounding algorithms are used. The features of GPLOTS will become clearer

to the reader in a subsequent example section.

THE "SCRATCHPAD" OPTIONS

It is standard practice for an experimental scientist to maintain a laboratory
notebook wherein are recorded important observations and calculations regarding the
outcome of his efforts. To a large extent, a similar facility is provided the
numerical experimentalist by GWRITE which lists all calls to it on the system output
printer. Nevertheless, there arise occasions when one would wish to annotate
meaningful or unusual results as they occur and indeed perhaps perform some simple
calculations before continuing the experiment. This need is fulfilled by sub-
procedure GNOTES which may be activated from either GTASK or GREAD through enabled
attention keys 28 and 29 (see Figs. 3, 4, and 6). Thus the user may employ this

feature while between problem procedures (waiting in GTASK) or during a problem

10.

procedure itself (while waiting for a reply to a CALL GREAD). As seen from Fig. 8,
two paths are available on entry to GNOTES; one allows the placing onto the 2250 and
also the hard-copy output of whatever comments one desires to insert, whereas the
other permits simple numerical computations to be performed. Return to the

invoking procedure occurs on the depression of an attention key (29) in the case of
the former, and the typing-in of an end message for the latter. Keyboard entries
are made in both cases as for GREAD.

Now consider the path labelled "DCC'" in Fig. 8. Our objective is to provide
the user with the ability to perform "slide-rule' type calculations while running
his principal problem procedure. The format we have chosen follows closely that of
CALL/360:DCC (for Direct Computation Capability). It is based on operations among
four registers; one of them, A, being the register on which the specified arithmetic
manipulations take place, and the others, B, C, and D, providing storage space for
intermediate results. The operations available are summarized in Table IIT, and

their usage may be seen in the example to be considered in a following section.

AN IMPLEMENTATION

Computer operating systems often interpose great barriers between man and
machine. The highest difficulty appears most often not to be the learning of some
high level computer language or the use of an interactive system such as described
herein, but rather simply the problems encountered in getting one's work to run under
a given operating system in a given computer installation. In the present section
we will discuss the implementation of our package in the computer center of the IBM
San Jose Research Laboratory. However, we wish to reiterate the thoughts of the
second section and stress that the basic philosophy and principles of our numerical
experimentation system are essentially independent of operating system and physical

hardware embodiment.

11.

Our computer center presently consists of an IBM System/360 M91 with 2 megabyte
high-speed storage operating under 0S/360/MVT/V18 (our package would operate just as
well on an M50, however). More than half the storage is allotted to long compute-
bound jobs. There are three jobstream regions of 256 kilobytes each serviced by
high-priority initiators, the highest priority of which also handles graphics
terminal work. Graphics jobs are allowed one minute limits on CPU time which in
real time expands to around two hours for the usual numerical experiment performed
interactively with such a powerful computer. Work requiring more than one minute or
more than 256 kilobytes can be run on a pre-scheduled basis. The interleaving of
interactive graphics with compute-bound applications in a multi-programming environ-
ment proves quite efficient. The interactive system is in a 'wait' state for long
periods (anticipating a reply to a CALL GREAD, for example) during which compute-
bound programs run unhindered. Yet when short bursts of CPU time for computation
are required by the numerical experiment, the high priority of the graphics initiator
permits immediate interruption of the compute-bound work for such purposes.

Under our present system organization all graphics jobs are entered from the
jobstream and held until activated from the graphics terminal. Jobs using our
numerical experimentation package are thus submitted as shown in Fig. 9. Cards 20
through 90 compile the problem procedure. Once compiled, the Linkage Editor builds
an executable load module about the problem procedure employing the libraries
designated on cards 180, 190, and 200. The library named on card 200 contains GTASK,
GNOTES, GWRITE, GREAD, and GPLOTS. Card 230 instructs the Linkage Editor to replace
dummy procedure TASKO01l with problem procedure YOURTSK. Cards 290 through 310 assign
I/0 devices required by the resulting module. Card 290 defines a semi-temporary data
set for the reception of graphs from GPLOTS which are to be subsequently dumped onto
a CALCOMP mechanical plotter. The only changes a user need make from job-to-job is
in the problem procedure deck itself signified by cards 70-90 and the Linkage

Editor control card 230. If it is desired to assign further problem procedures to

12,

the other attention keys available, this is best done by separately compiling and
storing them as members of a partitioned data set with subsequent link-editing
similar to that specified on cards 180-260. When the size or number of the problem
procedures causes the load module to become greater than 256 kilobytes, one may
construct an appropriate OVERLAY tree with proper Linkage Editor control cards.

The time taken to flip overlaid procedures between core and direct-access memory 1is

well within human reaction time.

SUGGESTED ORGANIZATION OF THE PROBLEM PROCEDURE WITH AN EXAMPLE

The author's experience coding numerical experiments to be run under the PL/I-
based system discussed herein has led to the conviction that an optimum design exists
for problem procedures. This design is outlined in Fig. 10. As shown, the first
task facing the user is frequently the entry of several, or perhaps many, numerical
parameters pertinent to his experiment. It is desirable that this be accomplished
in the most expeditious way possible. This end is achieved through the use of GREAD,
STRING I/0, and, most importantly, PL/I LIST-directed input which supports the
highest level free-form numerical syntax permitted by the language. Many parameters
can be most likely defaulted, examples being the initial values of XAXIS, YAXIS, and
MARK arguments for sub-procedure GPLOTS and quite possibly even the number of points.
The required calculations are then performed with these initial parameters. Upon
completion, an appropriate PUT statement, STRING I/0, and GWRITE are employed to
output a small number of important results on the 2250 keeping in mind the human
factors problem pursuant to rapid interactive analysis of any large amount of data.
The most informative output will of course be the graph, and the writer of the
problem procedure should take care that such will be the case. After reviewing
current results, the numerical experimentor may well wish to change selectively one

or more particular elements of the variable set, leaving the rest invariant, and

13.

loop back to redo the calculation. GREAD, STRING I/0, and PL/I DATA-directed GET
statements permit him to perform this function with adroitness and celerity. That
is, by explicitly naming and setting each variable to be changed equal to its new value
(exactly analogous to FORTRAN NAMELIST with the exception that no list header is
required and the ubiquitous semicolon replaces §END), the user may change any
variable at random as long as it was defined or DECLARED prior to the GET DATA
statement. Upon reception of the new data, the experiment is repeated with the
cycle continuing as long as the experimentor wishes. Often, once a satisfying
result has been achieved, the GET DATA block provides a convenient technique for
beautifying the plot scales and providing hard copy on the next loop through the
problem. The problem procedure may be exited at a CALL GREAD via attention key O.
Expositions of interactive graphics systems in the absence of a live demonstra-
tion prove to be tedious and difficult. Lacking the opportunity for said demonstra-
tion, we will instead attempt to instruct the reader in the use of the system through
a tutorial example. The example we choose comprises the calculation of Faraday
rotation and circular dichroism as a function of incident photon energy in a thin

absorbing film. Readers conversant with the subject area will recognize the following

equations
2 2 ;
LR 1 - R exp(-i2En_a/hc)
T = > exp(-iE(n_ - n)a/hc) , (n
1+RJ|1- R+ exp(-i25n+a/hc)
where
L ~ny
Re = T7m, (2)
1/2

=)
I+
1]

[1 + dr(x;; * ixlz)] ; (3)

14.

Xii = D 3. (P <g|" &) (e |x; B (glx le)(e |x, lg)

m - s (4)
g e>g ge + E 11"ge ge E +]_l"ge
with
-Eg o/KT -E¢/kT
P a =8 1+ e ’ (5)
s e>1
Eye = B = By (6)
and
= (log T , (7
acp =R (log T) , (8)

as describing this system in terms of quite fundamental parameters. Equation (1)
relates the relative transmission of the left (-) and right (+) circularly polarized
components of the linearly polarized incident light for film thickness a. The next

two equations define the complex optical response functions R., the fresnel

4
reflectivity coefficient, and n,, the index of refraction, which are employed in

Eq. (1). These are followed by the complex susceptibility tensor, Xij’ as derived
from first-order time dependent perturbation theory. Here in Eq. (4) are contained
the fundamental quantities defining the material comprising the film. The subscripts
g and e enumerate, respectively, the possible initial and final electronic states of
the system whose energy values are given by Eg and Ee and whose difference Ege

is defined by Eq. (6). Pge is then the linewidth of the optical transition between

any two states and E 1is the energy of the incident photon. In the numerator of

Eq. (4) we have the matrix elements <g]xi|e> of the cartesian components of the

15.

dipole ope:ator connecting the magnetically decoupled system of energy levels. P
and Pe denote occupancy of the initial and final states, respectively, with the
population being Boltzmann-distributed with temperature as shown in Eq. (5). Finally
the sought for Faraday rotation and circular dichroism are displayed in Eqs. (7) and
(8).

A perusal of the above equations should leave the reader with an appreciation
of their mathematical complexity and also of the vicissitudes to be encountered in
attempts to trace through to the final result the effect of variations in the
fundamental parameters without numerical experimentation. This morbid algebraic
construction is, of course, common to all problems susceptible to this technique.
For our tutorial example, we will apply Eqs. (1)-(8) to optical transitions between
a 2S ground state and a 2P excited state in the presence of spin-orbit coupling and
a magnetic field. The pertinent multiplet structure is shown in Fig. 11 with the
transitions concerned indicated thereon. Figures 12-17 contain photographs of the
sequence of events leading through the problem. Detailed descriptions of the
operations underlying each figure will be found in the associated caption. The
experiment consists of the following sequence of events:

(1) The initial calculation of Faraday rotation between 0.0 and 5.0 eV for a
transition at 2.0 eV with a linewidth of 0.4 eV, spin-orbit splitting of 0.1 eV, and
oscillatof strength of 0.01 eV in a magnetic field of 105 gauss is performed for a
sample 5up thick at a temperature of 4.2°K (Figs. 12 and 13).

(2) The spin-orbit splitting is then changed to 0.8 eV and the new calculation
overlaid against the old (Figs. 13 and 14).

(3) The display of the circular dichroic phase shift is then requested
(Fig. 15).

(4) A return to the previous value of spin-orbit coupling is made but with a

change in temperature to 300°K. A notation is inserted using GNOTES (NOTES)

16.

commenting on what is to be expected from this modification (Fig. 16), and a new
graph produced.

(5) Finally a calculation is effected employing GNOTES (DCC) to determine the
ground state splitting in eV units (Fig. 17).

Thus we have illustrated with an actual example the philosophy of problem
procedure organization outlined at the beginning of this section. The interplay of
the various parameters of the problem is almost endless - it should be clear by now
that unless some way of rapidly testing their interdependence was found, such as
provided by the interactive graphics package described here, one would be very

reluctant to tackle these tasks at all.

CONCLUSION

In creating programming packages, one attempts to emerge with a result that
balances simplicity with power. To achieve maximum flexibility one would have to
continually resort to machine language code. On the other hand, a package would
petrify if for the sake of extreme simplicity it is directed toward the solution of
only one class of problems. We chose the path of extending a well-known language
through provision of a subroutine library, one commonly taken in many other areas
of computer application. By identifying what we felt to be the basic qualities
desired in a terminal system by the casual scientific user, namely, ease of data
entry, simple text output format, and graphing of computational results, we were able

to limit this library to only three subroutines.

17.

ACKNOWLEDGMENTS

The author would like to express his gratitude to the staff of the IBM San Jose
Research Laboratory Computer Facility, and particularly to E. Ryan, K. G. Field, and
E. I. Mahoney for their assistance in implementing the package discussed in this

paper. He is appreciative to R. Kay for a critical reading of the manuscript.

REFERENCES

1. "Interactive Graphics in Data Processing,'" IBM Systems Journal 7 (1968).

2. Computer Graphics: Techniques and Applications, ed. by R. D. Parslow,

R. W. Prowse, and R. E. Green, Plenum Press, 1969.

3. "A Guide to PL/I for Fortran Users," IBM Form C20-1637.

4. E. J. Kinsinger, "Procedures Allowing PL/I to Call Fortran and Fortran to Call
PL/I," SHARE Document C-5225, 1969.

Die A. D. Rully, IBM Systems Journal 7, 248l(1968); "IBM System/360 Operating System
Graphic Subroutine Package (GSP) for FORTRAN IV, COBOL, and PL/I," IBM Form

C27-6932.

18,

TABLE I. Use of GREAD and STRING I/0O to Enter Numerical Data From 2250 Keyboard.

An Example of the INPUT Character String Read Below Might be ""6.28, 2.99E + 10,
137m,

DECLARE INPUT CHARACTER (73);
CALL GREAD (INPUT);

GET STRING (INPUT) LIST (TWOPI, C, IRFSC) ;

19,

TABLE II. Parameter List for Sub-Procedure GPLOTS.

Parameter Description
X Independent variable vector
Y Dependent variable vector.
N Number of points in X and Y.
XAXIS Configuration of x-axis.
XAXIS (1) = Scale factor in user's units per division. The box for
the graph is divided on its sides into ten divisions. The scale
factor is in terms of these divisions. If XAXIS(1) = O then
automatic scaling is used and XAXIS(1) returns with the computed
scale. XAXIS(2) = beginning value for x-axis in user's umits.
YAXIS Analogous to XAXIS
MARK Symbol and overlay identifier.
=1, points plotted on 2250
=2, lines drawn between points on 2250
=3, points plotted on CALCOMP
=4, lines drawn between points in CALCOMP
<0, new plot is overlaid on previous plot with new y-axis drawn
NAMEX 36 character title for x-axis
NAMEY Analogous to NAMEX

20,

TABLE ITI. List of Direct Calculation Capability Operations Available
in Sub-Procedure GNOTES.

Arithmetic Operation Description

+ (optional) Add operand to value in register A
- Subtract operand from A

* Multiply A by operand

/ Divide A by operand

*k Exponentiate A by operand

Function Operation Description
on A
SIN Sine
cos Cosine
TAN Tangent
CoT Cotangent
SEC Secant
Ccsc Cosecant
ASN Inverse Sine
ACS Inverse Cosine
ATN Inverse Tangent
RAD Degrees to Radians
DEG Radians to Degrees
HSN Hyperbolic Sine
HCS Hyperbolic Cosine
HTN Hyperbolic Tangent
EXP Exponential Function
ATN Inverse Hyperbolic Tangent
LGT Briggs Logarithm
LOG Naperian Logarithm
ALG Briggs Antilog
ERF Error Function
FAC Factorial
PYT (A2 + BH1/2
SQR Square Root
EV Ergs to Electron-volts
WN Ergs to Wavenumbers
REV Electron-volts to Ergs
RWN Wavenumbers to Ergs
CS Change Sign
R Reciprocal
Z Clear A, B, C, and D
ZA Clear A only
ZB Clear B only
ZC Clear C only
ZD Clear D only

END End Message

21,

TABLE III. List of Direct Calculation Capability Operations Available

in Sub-Procedure GNOTES (Cont.)

Assignment Operation Description Examples
Replace Contents of
A= Specified Register A= -6.2
(or B=, C=, D=) With Value on Right C=A
of = sign.
Built-in Constants Description Value and Units
&PI m 3.141593
GE e 2.718282
&C Velocity of Light (c) 2.907925- 1020 cnfsec
&Q Electronic Charge -1.60210-10~20 emu
&M Electronic Mass 9.1091-10"28 g
GA Avogadro Number 6.02252-10+23
&H Plank Constant (h) 6.625610" 27 erg-s
&HB Plank Constant/2m 1.05450-10"%7 erg-s
§AO Bohr Radius 5.29167-107° cn
§MU Bohr Magneton 9.2752-10"% emu
§K Boltzmann Constant 1.38054-10716 erg/°K
GHC he 1.98631-10-16 erg-cm

22,

[| InuLL] lEnD | | ol

= R H|B|AIAHRIR[RS AE] ey
w] QW EEDDLDEE E
= RANDAREEDRGDDE
+EHNEAEDERMODE0 =

L -]

CON'T

Figure 1 Alphanumeric keyboard of the IBM 2250 Display Unit. The "END" or

"CANCEL" functions are activated by depressing the ALT key simultaneously

with either the 5-% or 0-) key.

23,

&?

PLOTTING REGION (GDSPLT)

500 X 500 POINTS

ACCESSED BY:
CALL GPLOTS (X,Y N XAXIS,YAXIS,MARK NAMEX NAMEY):

OUTPUT REGION (GDSWRT)

10 LINES - 74 CHARACTERS

ACCESSED BY:
CALL GWRITE (TEXT);

— — — — — — — — S— — — — — — —

INPUT REGION (GDSRD)
1 LINE - 73 CHARACTERS

ACCESSED BY: CALL GREAD (MSG); .

Figure 2

Layout of the 2250 CRT Screen. Each region is defined within GSP by

the graphic data set enclosed in parentheses.

24,

ENTRY FROM
0S/360
JOB SCHEDULER
GTASK
FUNCTIONS: OFE (31)
(1) INITIALIZE 2250 AND GSP i EXIT
(2) WRITE GREETING
(3) PROVIDE ERROR RECOVERY ATTN
(4) ENABLE ATTN KEYS 28 AND 29 |«
TO SELECT NOTES OR DCC (ATTN KEY 0)
—p| (5) ENABLE ATTN KEYS 15 TO
~ SELECT PROBLEM PROC NOTES/DCC (28/29)
(6) ENABLE ATTN KEY 31 FOR EXIT [¢
RUN (1-5]
ON {(1-5)
ERROR
GNOTES
PROBLEM
PROCEDURE NOTES/DCC
(USER - WRITTEN) (28/29)
i mimpringihpipninny. S
A: PROC:
. GREAD
. 4—P| GWRITE
F ¢——P»| GPLOTS
END A;
Figure 3 Flowchart of the overall organization of the inferactive system. The

user need only concern himself with the coding of the problem procedure
and the proper use of GREAD, GWRITE, and GPLOTS.

GTASK are pictorial only and are not meant to point to a particular

function invoked on returning or exiting.

The flow paths from

25,

GTASK: PROC OPTIONS (MAIN)

ON CONDITION(GBACK): ——r
Provide a direct return
from GREAD

Crsate on unit for problem data sets GDSWRT, GDSRD,
procedure uss - reset error and GDSPLT, and their boun-
condition and display message daries - display greeting on 2250
screen

ON ERROR: Initialize GSP, define graphic

E

Enable attention keys 1-5 for selection of one of five problem procedures -
— also enable keys 28 and 29 for NOTES and DCC and key 31 for job
termination

h 4
Wait for problem selection via call to GSP subroutine RQATN

A 4
Call appropriate problem procedure according to attention key depressed

CALL TASKO1 KEY 1

I |

KEY 31

STOP

| ¢
|
|
|
!

|
I
CALL TASKO0S : KEYs !

RETURN

CALL GNOTES ‘___KE_Y_&
or 29

Figure 4 Flowchart of main procedure GTASK.

26,

GWRITE: PROC (TEXT)

-

Reset GSP graphic data set GDSWRT which defines

message output area.

Insert TEXT into bottom of core image of message area
and move up 9 previous lines.

I

Recreate message area on display screen with GSP
subroutines PTEXT and EXEC (GDSWRT)

A 4

Copy TEXT onto system output device

v

RETURN

Figure 5 Flowchart of sub-procedure GWRITE.

27,

GREAD: PROC (MSG)

l

Reset GSP graphic data set GDSRD which defines input

message area

Place question mark on left of input line and insert cursor
where first character is to be typed

Enable attention keys 0,28,29 and END key on alpha-
numeric keyboard; sound audible alarm to notify oper-

ator response is desired

Wait for input message to be entered via call to GSP
subroutine RQATN. Wait state terminated whenever
attention key 0 or END key is activated

CALL
GNOTES

SIGNAL

»| CONDITION(GBACK)

Return to GTASK

Read in MSG entered into keyboard by calling GSP sub-

routine GSPRD

Remove cursor and MSG from input area; disable attention
key 0 and END key

A 4
CALL GWRITE (MSG)

h 4
RETURN

Figure 6 Flowchart of sub-procedure GREAD.

28,

| GPLOTS: PROC (X,¥,NXAXIS,YAXIS MARK NAMEX NAMEY) |

Update plot counter
and assign mext cor-
relation mumber

Resst GSP graphic data set GDSPLYT which defines 2250 plot
arsa, set plot counter %0 one, sssign first comelation number,

.

Scaie X and Y to sbsohunte 2250 scresn
coordinetes apcorting to demands of i
XAMIS and WAXIS

\ 4

Genarate plot using GSP subroutines PLINE or
PPNT and currest correlstion number

k 4
Label x-scis tic mearks with sppropriste vakees and

Label y-axis tic mertks with sppropriste valkses and P
include NAMEY wsing GSP subroutine PTEXT

A 4
| caLLexec@osmr) |

Figure 7 Flowchart of sub-procedure GPLOTS. Not shown are those sect_ims used

to produce off-lime Calcomp hard-copy graphs.

29.

Enable attention
Key 32 to read
P Keyboard - Wait
for return from
RQATN

Read graphic data

'

GNOTES: PROC(I)

set GDSRD and If message
display message via “—WP RETURN
CALL GWRITE

Do
we want
NOTES or DCC?
(I=0or 1)

Enter DCC internal procedure
and perform desired arithmetic

function

Display contents of registers -
if syntax error occured so
indicate

Figure 8 Flowchart of sub-procedure GNOTES.

Enable attention key 30
for return and 32 to read
keyboard - Wait for return <+
from RQATN

32 l:”()

RETURN

\ 4
Read graphic data set
GDSRD and display con-
tents via CALL GWRITE

This sub-procedure is accessible by

the problem procedure only when it calls GREAD. Attention key 28 (I = 0)

and attention key 29 (I = 1) choose

DCC and NOTES, respectively.

30,

F/PAGSCOPE JOB K05—4167,°GRANT, PM?® 00010

F4% SRk EkEEE COMPIULE P22 222222 23 0020

#7% PERFORM IN JOBSTEP PROBPROC THE STANDARD IBM PL/I CATALOGED 00030

#/7% PROCEDURE FOR COMPILE, LINK-EDIT, AND EXECUTE 00040

//PROBPROC EXEC PLILFCLG FIRST EXECUTE THE PL/I COMPILER 00050

FIPLIL.SYSIN DD = CARDS TO BE COMPILED FOLLOMW 00060

YOURTSK: PROC: /* FIRST CARD OF PROBLEM PROCEDURE =/ 00070

/% PL/I CARDS FOR YOUR PROBLEM PROCEDURE =/ 00080

END YOURTSK: /% LAST CARD OF PROBLEM PROCEDURE =/ 000%0

= 00100

F % e e e 2 s LINK-EDIT H e e i el 00110

J7% NDW WSE THE LINKAGE-EDITOR TU OBTAIN THE REQUISITE SUBPROGRAMS 00120

#7#% CALLED BY YOUR PROBLEM PROCEDURE AND REPLACE DUMMY SUBPROGRAM DDL30

/7% TASKOL IN NAIN PROCEDURE GTASK WITH YDURTSK, THUS CREATING AN 00140

d9% EXECUOTABLE MODDULE 00150

J7% THE FDLLOWING. CARDS DEMOTE THE LIBRARIES THAT MAY BE ACCESSED 8Y 00160

- #74% YOUR PROBLEN PROCEDURE DOLTO

- FILXED.SYSLIB DD 20180

7 DD DSN=SYS1.FORTLIB,DISP=SHR 00190

. 4 DD DSN=KD5.GRANT,DISP=SHR 00200

L #d% THE FOLLOMING CARDS CREATE THE EXECUTABLE LOAD MODULE 00210

FILXED.SYSIN DD = INPUT CARDS TO THE LINKAGE EDITOR FOLLOM 00220

., REPLACE TASKOL{YOURTSKD, TASKOLA{YOURTSKA) 00230

INCLUDE SYSLIBIGTASK) DOZ240

ENTRY IHENTRY 00250

hd 00260

R i L BEESEREEEE EXECUTE EREER SRR 00270

w44 FIMALLY ASSIGN APPROPRIATE 1/0 DEVICES AND RUN THE JOB 00280

T #/CD.PLOTTER DU DSN=K05.PMGPLDT ,DISP=SHR DEFINES CALCOMP STORAGE 00290

#160.FTIOF00]1 DD UNIT=GRAPH ASSIGNS A 2250. FOR THIS J0B 00300

o #I6DL.8YSIN DD = ANY INPUT CARDS NEEDED BY YOURTSX FOLLOW 00310

L= . 00320

Figure 9 Sample Job Comtrol Language deck necessary for implementing am

imteractive problem procedure in a typical computer center jobstream

environment .

31,

YOURTSK:PROC;

I

(1)

(2)

Enter initial values of problem parameters using GREAD
and PL/I LIST-directed GET statements with STRING
1/0.

Default as many initial values as possible; for example,
use autoscaling (XAXIS(1), YAXIS(1) = 0 in GPLOTS)
for first graph.

——» Perform requisite calculations

v

h 4

(1) Output important results via STRING
I1/0 and CALL GWRITE.
(2) Produce graphic display via CALL GPLOTS.

I

Using PL/I DATA - directed PUT statements,
STRING 1/0, and CALL GWRITE, display
current values of important parameters.

'

Change any parameters as desired via GREAD
and PL/I DATA - directed GET statements
with STRING 1/0 and repeat.

Figure 10

Suggested organization of a typical problem procedure.

32,

a— 32
5 T 1/2

-1/2

7'y -3/2

7y X 1/2

1/2

|
|
|
I
|
2g i %172/ oM

Y 72

Figure 11 Term scheme for a 2S - 2P transition with spin-orbit splitting in the
presence of a magnetic field. o is the spin-orbit coupling parameter,
H the field strength, and M, the Bohr magneton. Shown are allowed
transitions for left (-) and right (+) circularly polarized radiatien
and unpolarized radiation (0) from both components of the magnetically
split 2S ground state. The transition strengths are related to each
other to within a constant factor by the appropriate 6-j and 3-j

coefficients.

33,

Figure 12

EXREXXEREE DIALOGUE/360 XEXEEEXTNE

*E8x%x DATE: 04/13/70 =xxk%x wxsxs TIME: 18:25:04 040 xxuxsx
ENABLE 'EH TASK WITH ATTENTION KEYS
EXECUTE TASK
sospenenee 2S - 2P MAGNETOD-0PTIC RESPONSE eessessns
USE PL/I LlsT-DlRECTED RULES FOR FOLLOWING INPUT
ENTER EMIN. EMAX. ED- ZS0, AND DS IN EV UNITS. AND H IN GAUSS
T IN (EL\"IN. AND A N
70.5.2, .4, . .91-!00000-4.2-5.05-04_

Photograph of sign-on greeting, problem procedure selection, and entry
of initial data to same. Text following "EXECUTE TASK 2" is generated
by the problem procedure via calls to GWRITE. The last line is the
operator response to a call to GREAD. At the mdment we are waiting

in GREAD for the operator to strike the "END" function on the 2250

keyboard.

34,

Figure 13

1.45E+01 | | T T T T T | T
F
A — =
R
D
b 1.2¢E+01 |- .. —
Y
R — -
0
T
? s.soce00 |- -
H _
0
N — -
D 4.9%E+00 |— -
€ * .
G
R - =
E
E
s
1. 126400 |- . s
= paLTT assensseeeet a1l |
-2.T1E00 L 1 | | | Na L | |
0.00E+00 5. 00E+00
ENERGY (EV)
USE PL/1 LIST-DIRECTED RULES FDR FOLLDHIM INPUT
ENTE! Enlu. EMAX, ED. GAMMA. 2SO. AND DS IN EV UNITS. AND H IN GAUSS
n. AND A IN CM
'052-. 4..1,.01. 100000.4 2

DﬂmYOU MISH CIRCULAR DlCHlOIC PHlSE SHIFT ALSO? REPLY YES OR ND
oumrou WISH TO REVIEW STATUS OF IMPORTANT VARLABLES? REPLY YES DR NO

HAKE ANY CHANGES USING PL/1 DATA-DIREC R
DEMOTE END OF CHANGES BY TI'PII’HS LR'E'TTEEHDULES

1250=.8. YAXIS(1)=0.MARK=~2. LAST="END ' ; -

The "END" function has been executed and the data entered in Fig. 12
has been read. The Faraday rotation for the model of Fig. 11 has been
computed over the energy limits 0-5 eV and is displayed with a call to
GPLOTS. The problem procedure then offers two options which are
rejected. Finally, using GREAD with a subsequent GET DATA statement
and STRING I/0 (see Fig. 10), we change only the spin-orbit coupling
constant Z50, two parameters to GPLOTS, and are ready to repeat the

calculation.

35.

4. 35E+01

3. 15E+01

1.95E+01

ZO==>—-020 <PO@V@»M

1.5E+00

amMMmMacomo

-4 . 41E+00 -

| | |

0.00E+00 ' 5.00E+00
ENERGY (EV)

=1.64E+01

T IN KELVIN. AND A IN CH
70,5.2,.4,.1,..01.100000.4.2.5 .0E-04
DO YOU WISH CIRCULAR DICHROIC PHASE SHIFT ALSO? REPLY YES OR NO

NO

D%YUU WISH TO REVIEW STATUS OF IMPORTANT VARIABLES? REPLY YES OR NOD
HAKE ANY CHANGES USING PL/1 DATA-DIRECTED RULES

DENDTE END OF CHANGES BY TYP l?(i LAST="END

7Z50=.8. YAXIS(1)=0,HARK==-2. L 'END '
DO YOU WISH CIRCULAR DlCHROIC PNASE SHIFT ALSO? REPLY YES OR NO

?

Figure 14 The calculation has been repeated with the new value of ZSO and
overlaid as a line plot (see Table II) on the old data. We now await

a reply to a query we declined on the first pass.

36,

Figure 15

¢ &.79E-01 .
D
[
H
s
g & 13E-01
s
H
1
F
T 3 .«%-01
R
A
0
8.04E-02
=1.8E-01 |—
e Tt
-4 52¢€-01
0.00E+00 5. 00E+00
ENERGY (EV)
?
EHIN= 0.00000E+00 EMAX= 5 .00000F+00;
E0= 2.00000E+00 Gm'm- 3.99999E-01:
ZsD= 1.99 111:-01 os- 3, 3me-es.
H= 1.0 +05 T= 4_19999C+00 A= o 99999E-04;
XAXIS()= 4 ﬂﬂﬂ:-m xnls:.‘n_ .GO0OOE +00 :
:'AXIT:()= 1.33053E-01 YAXIS(2)=-4_G1802E-01:
NY

~-2;
HAKE CHANGES USING PL/| DATA-DIREC R

DE'OTE END OF CHAMGES BY - TPDM 0 AETWEUULES
?

We reply in the affirmative to both the request for circular dichroic

phase shift display and for a review of the present value of important

variables. The phase shift is plotted in overlay fashion and the

pertinent variables appear through use of a PUT DATA statement, STRING

I/0 and GREAD in the problem procedure.

37.

Figure 16

-THE EFFECT SHOULD BE TO DEC

1.06E=01 r T B, I ! ' ! !
-
c 3 -
R .
3 P
e t1.zse-01 -]
Y
: B ' -
o]
T
} e.ve£-02 | i
|
0
0 B . -
£
E .
¢ B -
s .
E
E)
1.31E-02 :]
:.n.n..--_"'...“ = .-"."_.n-.'-'o‘-
2 526-62 | 1 1 1 1 i & 1 | 1
0.00E+00 Vs
ENERGY (EV)

MAKE ANY CHANGES USING PL/I DATA-D IRECTED RLI.ES
LAS "END " ;

DENOTE END OF CHANGES BY TYPING:
et T A o i ——

LET US NOW RETURN TU THE l'RlGlNAL PROBLEM WITH ZSD=.1 BUT WITH THE

THE EFPE ROULE Bt T0 B ASE THE FARADAY ROTATlDN DUE TO

POPULATING THE SPIN=1/2 COMPONENT ur THE GROUND S
:tutntttl::t:tut::txtstlstu E N NOTES sxtztax:sttxs::x::zssl:s:ll
? ZS0= =300, YAXIS(1)=0.MARK=1.LAST="END "'

D0 You lISH CIRCULAR DICHROIC PI'MSE SHIFT ALSOD? REPLY YES OR NO

?

Before replying to the request for more data, we enter an annotation
concerning what we are about to do by selecting the NOTES option of
GNOTES with attention key 29. Once the desired comment has been made,
we exit via attention key 30 (see Fig. B) and answer the original

query with new values of spin-orbit coupling and temperature. The new

result is then displayed.

38.

1.66E-01 1 T T g | I I | | |
F
A — -
R
D
D 1 zs£-01 [~ "
Y
R - .
0
T
P oe.aeE-02 |- .
|
0
N - . .
0 5.13E-02 |- : -
£
6 :
R - .
3 ;
£
s
1.31E-02 |- -
e [W SR SR WAl SR S
0.00E+00 5.00E400
smr (EV)
EREEXLAXERE XL EAB XL CEL LB RREE S TES “"““‘mm.’u..“.'
COMPUTE GROUND STATE SPLITTING ruu H=180000 GAUSS
ESEESEERERLER LR EEXEL LR, EN TES EREXERR AL LE XX VRLEELXLETREE
EXRELRERAEELRRL XN L REE C EEREREEAREE AR EXLLERL LR LR EET R R

100000
': 1.00000E£+05 B= 0.00000E+00 C=

23-"213“E-“ B= 0.00000E+00 C=

0.00000E+00 D= 0.00000E+00:
©.00000E+00 D=

0. 00000E+00:

A=-5.78815E-04 B= ©.00000E+00 C= ©.00000E+00 D= ©.00000C+00:
52_
Figure 17 We now begin a simple calculation of ground state splitting before

continuing the problem procedure.
prior to invoking DCC with attention key 28. Note that after each
entry and computation the present contents of all registers are

displayed.

or DCC.

An appropriate comment_is entered

Note also that no question mark preceeds entries to NOTES

