SuperGrid-2 Workshop

University of Illinois at Urbana-Champaign (UIUC) October 25-27, 2004

Bob Lasseter University of Wisconsin-Madison

Superconducting Network

System:

Low voltage high current DC superconducting network (generation>DC>distribution)

Issues

•Complexity of System control (100s of sources and 100,000s loads) •Current control

References:

Johnson,B.K., R.H. Lasseter, F.L. Alvarado, D.M. Divan, H. Singh, M.C. Chandorkar, and R. Adapa, "High-Temperature Superconducting dc Networks", IEEE Transactions On Applied Superconductivity, Vol. 4, No.3, pp.115-120, September 1994.

Tang, W and R.H.Lasseter, "An LVDC Industrial Power Distribution System without Central Control Unit," PECS, Ireland, June 2000.

DC Transmission Systems

Traditional:

Multi Terminal HVDC

Superconducting

- Networking issues
- Current control

Traditional Mult-terminal HVDC

Thyristor Controlled Rectifier

$$\langle V_{dc} \rangle = V(\alpha) - \frac{3}{\pi} X_{ac} I_{dc}$$
 $V_A, V_B, \& V_C$ Control currents

Traditional HVDC "Net"

 $i_1 \& i_2$ are a function of $R_1 \& R_2$

Can not independently control currents

Control of Current: dc/dc converter

• High current in the dc/dc converter

Current levels in superconductors

- In steady state there is a single dc voltage across the system
- Current flow is a function of ΔV over time and the line inductance.

ISCONSIN

Current levels in superconductors

When line 2 is inserted no current will flow

Current levels in superconductors

DC/DC Converter: High current and zero ΔV in SS

Superconductor Current steering*: Slow to recover

References:

*Johnson,B.K., R.H. Lasseter, F.L. Alvarado, and R.Adapa, "Superconducting Current Transfer Devices for Use with a Superconducting LVdc Mesh", IEEE Transactions on Applied Superconductivity, Vol. 4, No. 4, pp. 216-222, December 1994

Superconducting Cable

System Issues

- Difficult to create networks
- + No load dependent voltage drop

Can create a superconductor ring and use the voltage for control.

Ring SuperGrid

© Robert H Lasseter 25 October 2004

THE UNIVERSITY

Power Dispatch on dc voltage

Thyristor Controlled Rectifier

25 October 2004 © Robert H Lasseter

Power Dispatch on dc voltage

© Robert H Lasseter 25 October 2004

Power Dispatch on dc voltage

DC voltage with loss of one Rectifier

Distributed Control

Rectifiers

- Share load
- Independent of number

Inverters

- Provides stable ac voltage to the load
- Automatic load shedding

Coordination is achieved through dc voltage

Reference:

Tang, W and R.H.Lasseter, "An LVDC Industrial Power Distribution System without Central Control Unit," PESC, Ireland, June 2000.

Single system voltage used for load tracking control

Research Issues

- Proof of principle of the "ring concept" with voltage control
- Current steering methods
- Fault clearing
- Hydrogen only grid- Local DER for generation.

