ROCK GROUP

Panel

Ed Cording

Peter Dickson

Wes Myers

Craig Smith

UIUC

MWH Global

Los Alamos

DMJM

Goal

- Supergrid
 - -Support
 - -Facilitate

Status of Industry

- Industry: small engineering firms and contractors, risks high, projects must stand on their own.
- Major development of pressurized face TBMS, real time readouts
- Innovations on HDD and Micro-tunneling: small projects and operators
- Government funding has not been available.
- Few bidders on large tunnel contracts (200+ million).

Opportunity to jump start the supergrid civil and construction work

- Supergrid project will generate industry interest
- Development projects will improve industry capabilities
- Tailor research/development to specific issues of tunneling on the supergrid.
- Tunnel demonstrations on supergrid demonstration projects
- Tunnel demonstrations on other tunnel projects:
 - provide funds for development that support innovations by machine manufacturer, contractor and tunnel designer
 - Ultimately: supergrid application

- Engage the tunneling industry
 - Engineers
 - Machine manufacturers
 - Contractors
 - Research organizations
 - Students
 - Advisory panel
- Concept studies
- Specific research objectives & demonstrations
- Competitions

3 Ways to be more efficient/ cost effective

- 1. Increase advance rate
- 2. Reduce crew size
- 3. Reduce Risk
 - To Bidder/Construction Contractor
 - Better Contracting Practices
 - Reduce delays/ cost overruns
 - Robust tunneling equipment
 - Improved exploration, sensing and response to ground
 - Methods insensitive to variable ground conditions

Contracting practices

- Major project, multiple contracts
- **1000** km:
 - 10 km contracts: 1 year: shafts & mob., 6 month tunneling at 2 km / month.
- Opportunities for true incentives (cost and schedule)
- Mobilize capabilities of private industry
- Contracting practices, site investigations, construction management that reduce risk.

Research & development topics

Exploration

- Horizontal core drilling and sampling over significant length of tunnel project. Major contribution to defining tunneling conditions.
- In hole testing including borehole televiewer (acoustic log showing fracture orientation and openness of joints). Technology available.
- Geophysical exploration
 - Needs to be very focused and specific
 - Surface, Cross hole tomography

Construction monitoring & sensing

- Ground conditions: ahead of face and around shield
 - .e.g. GPR, seismic
 - Voids created by tunneling: Ground loss and ground replacement volumes.
 - Boulders
 - Evaluate soil properties that are related to use of conditioners and slurries to support the tunnel face.
- Volume excavated with respect to volume of advance. Slurry volume in and out. Weighing, laser profiling of muck on belt.
- Sensing of cutter wear
- Increased linkage of sensors and readouts of machine functions with operation

Repair, access at face

- Reduce risk to crew and schedule
- Robotics
- Complete seals around cutters. Change cutters from back without requiring exposure to the ground
- Detection of wear, seized disc cutters
- Televiewers, video of conditions ahead of face

Ground loss

- More accurate and immediate sensing of ground loss.
- More reliable control of the face
 - Reduce dependence on operator
 - Rapid response of face support (conditioners, pressures) to changing ground conditions
 - Reduce sensitivity of face support to variable ground conditions

Tunnel lining

- Rapid ring building
- Ring building independent from shield advance.
- Automation of ring installation process
 - Rapid coupling, fewer and larger ring segments
- Materials: fiber concrete, other.
- Precast or Slipformed linings
- Improved reliability of seals and gaskets for the ring segments

Build on TBM & Directional drilling technologies

- Pilot drill hole with sampling.
- Pull TBM through

Nuclear

- Cavern construction and ground support
 - Large chambers in salt
- Reactor and energy conversion system layout in the underground
- Reactor Chamber ventilation
- Energy conversion heat rejection.

Existing underground

Tunnels

Storage

- assess

Tunnel Advance Rates

	Excavation time	Lining Erection	Utilization	Advance / day
5-ft segments	15 min	30 min	75%	100 ft
10-ft segments	15 min	5 min	75 %	450 ft